
INTRODUCTION TO DATA
STRUCTURES

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

DATA

Data are simple value or set of values.

It specifies value of a variable or a
constant.

Eg: name, age, marks

Intrduction to Data Strctures 2

PNC CS

TWO TYPES OF DATA ITEMS

Elementary data items-

Data items that cannot be further divided

Eg: first name, last name, age

Grouped data items-

Data items that be further divided

Eg:- address- house name, place, pincode

Intrduction to Data Strctures 3

PNC CS

Field- collection of data items- name,
no,class

Record- collection of related fields (student
record)

File- collection of related records (student
file)

Data field record file

Intrduction to Data Strctures 4

PNC CS

Entity-

 An entity is something which has some properties called
attributes.

We can assign values to this attributes.

Entity set

Entities with similar attributes

Eg:- employees in an organization

 Information

Meaningful data or processed data
Intrduction to Data Strctures 5

PNC CS

DATA STUCTURES

A data structure is basically a group of data
elements that are put together under one name,
and which defines a particular way of storing and
organizing data in a computer so that it can be
used efficiently.

Logical mathematical model of organisation of
data.

Building blocks of program Intrduction to Data Strctures 6

PNC CS

Some common examples of data
structures are arrays, linked lists, queues,
stacks, binary trees, and hash tables

Intrduction to Data Strctures 7

PNC CS

DATA STRUCTURES ARE WIDELY APPLIED IN THE FOLLOWING AREAS:

Compiler design

 Operating system

Statistical analysis package

DBMS

Numerical analysis

 Simulation

Artificial intelligence

Graphics Intrduction to Data Strctures 8

PNC CS

CLASSIFICATION OF DATA STRUCTURES

Data structures are generally categorized
into two classes:

primitive and non-primitive data
structures.

Intrduction to Data Strctures 9

PNC CS

PRIMITIVE AND NON-PRIMITIVE DATA STRUCTURES

 Primitive data structures are the fundamental data types which are supported by
a programming language.

 Some basic data types are integer, real, character, and boolean. The terms ‘data
type’, ‘basic data type’, and ‘primitive data type’ are often used interchangeably.

 Non-primitive data structures are those data structures which are created using
primitive data structures.

 Examples of such data structures include linked lists, stacks, trees, and graphs.

 Non-primitive data structures can further be classified into two categories: linear
and non-linear data structures

Intrduction to Data Strctures 10

PNC CS

LINEAR AND NON-LINEAR STRUCTURES

 If the elements of a data structure are stored in a linear or sequential
order, then it is a linear data structure.

Examples include arrays, linked lists, stacks, and queues.

Linear data structures can be represented in memory in two different
ways.

One way is to have to a linear relationship between elements by
means of sequential memory locations.

The other way is to have a linear relationship between elements by
means of links. Intrduction to Data Strctures 11

PNC CS

However, if the elements of a data structure are not
stored in a sequential order, then it is a non-linear data
structure.

The relationship of adjacency is not maintained
between elements of a non-linear data structure.

 Examples include trees and graphs.

Intrduction to Data Strctures 12

PNC CS

ARRAYS

 An array is a collection of similar data elements.

 These data elements have the same data type.

 The elements of the array are stored in consecutive memory locations and are
referenced by an index (also known as the subscript).

 In C, arrays are declared using the following syntax:

 type name[size];

 For example,

 int marks[10];

Intrduction to Data Strctures 13

PNC CS

 The above statement declares an array marks that contains 10
elements.

 In C, the array index starts from zero.

 This means that the array marks will contain 10 elements in all.

 The first element will be stored in marks[0], second element in
marks[1], so on and so forth.

 Therefore, the last element, that is the 10th element, will be stored
in marks[9].

Intrduction to Data Strctures 14

PNC CS

Intrduction to Data Strctures 15

PNC CS

Arrays are generally used when we want to store large
amount of similar type of data

Intrduction to Data Strctures 16

PNC CS

LIMITATIONS

Arrays are of fixed size.

Data elements are stored in contiguous memory
locations which may not be always available.

 Insertion and deletion of elements can be
problematic because of shifting of elements from
their positions.

Intrduction to Data Strctures 17

PNC CS

LINKED LISTS

A linked list is a very flexible, dynamic data structure in
which elements (called nodes) form a sequential list.

 In contrast to static arrays, a programmer need not worry
about how many elements will be stored in the linked list.

This feature enables the programmers to write robust
programs which require less maintenance.

Intrduction to Data Strctures 18

PNC CS

 In a linked list, each node is allocated space as it is added to the
list.

Every node in the list points to the next node in the list.

Therefore, in a linked list, every node contains the following two
types of data:

 The value of the node or any other data that corresponds to that
node

A pointer or link to the next node in the list

Intrduction to Data Strctures 19

PNC CS

 The last node in the list contains a NULL pointer to indicate that it
is the end or tail of the list.

 Since the memory for a node is dynamically allocated when it is
added to the list, the total number of nodes that may be added to a
list is limited only by the amount of memory available.

Intrduction to Data Strctures 20

PNC CS

Intrduction to Data Strctures 21

PNC CS

STACKS

A stack is a linear data structure in which insertion and
deletion of elements are done at only one end, which
is known as the top of the stack.

Stack is called a last-in, first-out (LIFO) structure
because the last element which is added to the stack is
the first element which is deleted from the stack.

In the computer’s memory, stacks can be implemented
using arrays or linked lists.

Intrduction to Data Strctures 22

PNC CS

 Every stack has a variable top associated with it.

 Top is used to store the address of the topmost element of the stack.

 It is this position from where the element will be added or deleted.

 There is another variable MAX, which is used to store the maximum
number of elements that the stack can store.

 If top = NULL, then it indicates that the stack is empty and if top
= MAX–1, then the stack is full.

Intrduction to Data Strctures 23

PNC CS

Intrduction to Data Strctures 24

PNC CS

 A stack supports three basic operations: push, pop, and peep.

 The push operation adds an element to the top of the stack.

 The pop operation removes the element from the top of the stack.

 And the peep operation returns the value of the topmost element of the stack (without
deleting it).

 However, before inserting an element in the stack, we must check for overflow conditions.

 An overflow occurs when we try to insert an element into a stack that is already full.

 Similarly, before deleting an element from the stack, we must check for underflow conditions.

 An underflow condition occurs when we try to delete an element from a stack that is already
empty.

Intrduction to Data Strctures 25

PNC CS

Intrduction to Data Strctures 26

PNC CS

INTRODUCTION
TO DATA

STRUCTURES -
PART2

P R E P A R E D B Y

D E E P T H I M P I S H A R O D Y

A S S T P R O F E S S O R

P R A J Y O T I N I K E T A N C O L L E G E , P U D U K A D

PNC CS

QUEUES

• A queue is a first-in, first-out (FIFO) data structure in which

the element that is inserted first is the first one to be taken out.

• The elements in a queue are added at one end called the rear

and removed from the other end called the front.

• Like stacks, queues can be implemented by using either

arrays or linked lists.

• Every queue has front and rear variables that point to the

position from where deletions and insertions can be done,

respectively.

Introduction to data structures-part 2 2

PNC CS

Introduction to data structures-part 2 3

PNC CS

• Here, front = 0 and rear = 5.

• If we want to add one more value to the list, say, if we want to add another

element with the value 45, then the rear would be incremented by 1 and the

value would be stored at the position pointed by the rear.

• Here, front = 0 and rear = 6. Every time a new element is to be added,

we will repeat the same procedure.

• Now, if we want to delete an element from the queue, then the value of front

will be incremented. Deletions are done only from this end of the queue.

Introduction to data structures-part 2 4

PNC CS

• However, before inserting an element in the queue, we must check for overflow

conditions.

• An overflow occurs when we try to insert an element into a queue that is already

full.

• A queue is full when rear = MAX – 1, where MAX is the size of the queue,

that is MAX specifies the maximum number of elements in the queue.

• Note that we have written MAX – 1 because the index starts from 0.

• Similarly, before deleting an element from the queue, we must check for

underflow conditions.

• An underflow condition occurs when we try to delete an element from a queue

that is already empty.

• If front = NULL and rear = NULL, then there is no element in the queue.

Introduction to data structures-part 2 5

PNC CS

TREES

• A tree is a non-linear data structure which consists of a collection of nodes

arranged in a hierarchical order.

• One of the nodes is designated as the root node, and the remaining nodes can be

partitioned into disjoint sets such that each set is a sub-tree of the root.

• The simplest form of a tree is a binary tree.

• A binary tree consists of a root node and left and right sub-trees, where both

sub-trees are also binary trees.

• Each node contains a data element, a left pointer which points to the left sub-

tree, and a right pointer which points to the right sub-tree.

• The root element is the topmost node which is pointed by a ‘root’ pointer.

• If root = NULL then the tree is empty.

Introduction to data structures-part 2 6

PNC CS

• Advantage: Provides quick search, insert, and delete

operations

• Disadvantage: Complicated deletion algorithm

Introduction to data structures-part 2 7

PNC CS

Introduction to data structures-part 2 8

PNC CS

GRAPHS

• A graph is a non-linear data structure which is a collection of vertices

(also called nodes) and edges that connect these vertices.

• A graph is often viewed as a generalization of the tree structure,

where instead of a purely parent-to-child relationship between tree

nodes, any kind of complex relationships between the nodes can

exist.

• In a tree structure, nodes can have any number of children but only

one parent, a graph on the other hand relaxes all such kinds of

restrictions

Introduction to data structures-part 2 9

PNC CS

• A node in the graph may represent a city and the edges connecting the nodes

can represent roads.

• A graph can also be used to represent a computer network where the nodes are

workstations and the edges are the network connections.

• Graphs have so many applications in computer science and mathematics that

several algorithms have been written to perform the standard graph operations,

such as searching the graph and finding the shortest path between the nodes of a

graph.

Introduction to data structures-part 2 10

PNC CS

• Note that unlike trees, graphs do not have any root node.

• Rather, every node in the graph can be connected with

every another node in the graph.

• When two nodes are connected via an edge, the two nodes

are known as neighbours.

Introduction to data structures-part 2 11

PNC CS

• Advantage: Best models real-world situations

• Disadvantage: Some algorithms are slow and very

complex

Introduction to data structures-part 2 12

PNC CS

Introduction to data structures-part 2 13

PNC CS

OPERATIONS ON DATA STRUCTURES

Introduction to data structures-part 2 14

PNC CS

Introduction to data structures-part 2 15

Thank you

PNC CS

INTRODUCTION TO DATA
STRUCTURES- PART3

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College,
Pudukad

PNC CS

ABSTRACT DATA TYPE

✓An abstract data type (ADT) is the way we look at a data
structure, focusing on what it does and ignoring how it does its
job.

✓ For example, stacks and queues are perfect examples of an ADT.

✓We can implement both these ADTs using an array or a linked
list.

✓This demonstrates the ‘abstract’ nature of stacks and queues.

✓To further understand the meaning of an abstract data type, we
will break the term into ‘data type’ and ‘abstract’, and then discuss
their meanings.

INTRODUCTION TO DATA STRUCTURES-PART 3

PNC CS

DATA TYPE

➢Data type of a variable is the set of values that the variable can take.

➢We have already read the basic data types in C include int, char,
float, and double.

➢When we talk about a primitive type (built-in data type), we actually consider
two things: a data item with certain characteristics and the permissible
operations on that data.

➢For example, an int variable can contain any whole-number value from –
32768 to 32767 and can be operated with the operators +, –, *, and /. In other
words, the operations that can be performed on a data type are an inseparable
part of its identity.

➢ Therefore, when we declare a variable of an abstract data type (e.g., stack or
a queue), we also need to specify the operations that can be performed on it.

INTRODUCTION TO DATA STRUCTURES-PART 3

PNC CS

ABSTRACT
➢The word ‘abstract’ in the context of data structures means considered apart
from the detailed specifications or implementation.

➢In C, an abstract data type can be a structure considered without regard to its
implementation.

➢It can be thought of as a ‘description’ of the data in the structure with a list
of operations that can be performed on the data within that structure.

➢The end-user is not concerned about the details of how the methods carry
out their tasks.

➢They are only aware of the methods that are available to them and are only
concerned about calling those methods and getting the results. They are not
concerned about how they work.

INTRODUCTION TO DATA STRUCTURES-PART 3

PNC CS

▪For example, when we use a stack or a queue, the user is concerned only
with the type of data and the operations that can be performed on it.

▪Therefore, the fundamentals of how the data is stored should be invisible to
the user.

▪They should not be concerned with how the methods work or what
structures are being used to store the data.

▪They should just know that to work with stacks, they have push() and
pop() functions available to them.

▪Using these functions, they can manipulate the data (insertion or deletion)
stored in the stack.

INTRODUCTION TO DATA STRUCTURES-PART 3

PNC CS

ADVANTAGE OF USING ADTS

➢In the real world, programs evolve as a result of new requirements
or constraints, so a modification to a program commonly requires a
change in one or more of its data structures.

➢ For example, if you want to add a new field to a student’s
record to keep track of more information about each student, then it
will be better to replace an array with a linked structure to improve
the program’s efficiency.

➢In such a scenario, rewriting every procedure that uses the
changed structure is not desirable. Therefore, a better alternative is
to separate the use of a data structure from the details of its
implementation. This is the principle underlying the use of abstract
data types. INTRODUCTION TO DATA STRUCTURES-PART 3

PNC CS

INTRODUCTION TO DATA STRUCTURES-PART 3

Thank you

PNC CS

z

Arrays

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

z

▪ An array is a collection of similar data elements.

▪ These data elements have the same data type.

▪ The elements of the array are stored in consecutive memory

locations and are referenced by an index (also known as

the subscript).

▪ The subscript is an ordinal number which is used to identify

an element of the array.

PNC CS

z
DECLARATION OF ARRAYS

▪ An array must be declared before being used. Declaring an array means

specifying the following:

▪ Data type—the kind of values it can store, for example, int, char,

float, double.

▪ Name—to identify the array.

▪ Size—the maximum number of values that the array can hold.

▪ Arrays are declared using the following syntax:

▪ type name[size];

▪ int marks[10];

PNC CS

z

PNC CS

z
ACCESSING THE ELEMENTS OF AN ARRAY

▪ To access all the elements, we must use a loop.

▪ That is, we can access all the elements of an array by varying the

value of the subscript into the array.

▪ There is no single statement that can read, access, or print all the elements of an

array.

▪ To do this, we have to use a loop to execute the same statement with different

index values.

PNC CS

z
Calculating the Address of Array Elements

▪ Address of data element, A[k] = BA(A) + w(k –

lower_bound)

▪ A is the array, k is the index of the element of which we have to

calculate the address, BA is the base address of the array A, and w is the

size of one element in memory, for example, size of int is 2.

PNC CS

z

PNC CS

z
Calculating the Length of an Array

▪ The length of an array is given by the number of elements

stored in it.

▪ The general formula to calculate the length of an array is

▪ Length = upper_bound – lower_bound + 1

▪ where upper_bound is the index of the last element and

lower_bound is the index of the first element in the array.

PNC CS

z

PNC CS

z
STORING VALuES IN ARRAYS

▪ When we declare an array, we are just allocating space for its

elements; no values are stored in the array.

▪ There are three ways to store values in an array.

▪ First, to initialize the array elements during declaration;

▪ second, to input values for individual elements from the keyboard;

▪ third, to assign values to individual elements

PNC CS

z

PNC CS

z
Initializing Arrays during Declaration

▪ When an array is initialized, we need to provide a value for every

element in the array.

▪ Arrays are initialized by writing,

▪ type array_name[size]={list of values};

▪ The values are written within curly brackets and every value is separated

by a comma.

▪ It is a compiler error to specify more values than there are elements in

the array. When we write,

▪ int marks[5]={90, 82, 78, 95, 88};

PNC CS

z

PNC CS

z
Inputting Values from the Keyboard

▪ An array can be initialized by inputting values from the keyboard.

▪ In this method, a while/do–while or a for loop is executed to

input the value for each element of the array.

PNC CS

z
Assigning Values to Individual Elements

PNC CS

z

Thank you

PNC CS

Array Operations

PREPARED BY

DEEPTHI M PISHARODY

ASST PROFESSOR

PRAJYOTI NIKETAN COLLEGE, PUDUKAD

PNC CS

OPERATIONS ON ARRAYS

 Traversing an array

 Inserting an element in an array

 Searching an element in an array

 Deleting an element from an array

 Merging two arrays

 Sorting an array in ascending or descending order

Array operations

2

PNC CS

Traversing an Array

 Traversing an array means accessing each and every

element of the array for a specific purpose.

 Traversing the data elements of an array A can include

printing every element, counting the total number of

elements, or performing any process on these elements.

 Since, array is a linear data structure (because all its

elements form a sequence), traversing its elements is very

simple and straightforward.

Array operations

3

PNC CS

Array operations

4

PNC CS

Inserting an Element in an Array

 If an element has to be inserted at the end of an existing array, then the task of

insertion is quite simple.

 We just have to add 1 to the upper_bound and assign the value. Here, we

assume that the memory space allocated for the array is still available.

 For example, if an array is declared to contain 10 elements, but currently it has

only 8 elements, then obviously there is space to accommodate two more

elements. But if it already has 10 elements, then we will not be able to add

another element to it.

Array operations

5

PNC CS

Array operations

6

PNC CS

 If we have to insert an element in the middle of

the array, then this is not a trivial task.

On an average, we might have to move as much

as half of the elements from their positions in

order to accommodate space for the new element.

Array operations

7

PNC CS

Array operations

8

PNC CS

Array operations

9

PNC CS

Deleting an Element from an Array

 Deleting an element from an array means removing a

data element from an already existing array.

 If the element has to be deleted from the end of the

existing array, then the task of deletion is quite simple.

 We just have to subtract 1 from the upper_bound.

Array operations

10

PNC CS

Array operations

11

PNC CS

 If we have to delete an element from the middle of an array, then it

is not a trivial task.

 On an average, we might have to move as much as half of the

elements from their positions in order to occupy the space of the

deleted element.

Array operations

12

PNC CS

Array operations

13

PNC CS

Array operations

14

PNC CS

Merging Two Arrays

 Merging two arrays in a third array means first copying the

contents of the first array into the third array and then copying the

contents of the second array into the third array.

 Hence, the merged array contains the contents of the first array

followed by the contents of the second array.

 If the arrays are unsorted, then merging the arrays is very simple,

as one just needs to copy the contents of one array into another.

 But merging is not a trivial task when the two arrays are sorted and

the merged array also needs to be sorted

Array operations

15

PNC CS

Searching

 Searching means to find whether a particular value is present in an array or not.

 If the value is present in the array, then searching is said to be successful and the

searching process gives the location of that value in the array.

 If the value is not present in the array, the searching process displays an appropriate

message and in this case searching is said to be unsuccessful.

 There are two popular methods for searching the array elements: linear search and

binary search.

 The algorithm that should be used depends entirely on how the values are organized

in the array.

 For example, if the elements of the array are arranged in ascending order, then binary

search should be used, as it is more efficient for sorted lists in terms of complexity.
Array operations

16

PNC CS

Linear Search

 Linear search, also called as sequential search, is a very

simple method used for searching an array for a

particular value.

 It works by comparing the value to be searched with

every element of the array one by one in a sequence until

a match is found.

 Linear search is mostly used to search an unordered list

of elements (array in which data elements are not sorted).
Array operations

17

PNC CS

 int A[] = {10, 8, 2, 7, 3, 4, 9, 1, 6, 5};

 and the value to be searched is VAL = 7, then searching

means to find whether the value ‘7’ is present in the array

or not.

 If yes, then it returns the position of its occurrence.

 Here, POS = 3 (index starting from 0).

Array operations

18

PNC CS

Array operations

19

PNC CS

Complexity of Linear Search Algorithm

 Linear search executes in O(n) time where n is the number of elements in the

array.

 Obviously, the best case of linear search is when VAL is equal to the first element

of the array.

 In this case, only one comparison will be made.

 Likewise, the worst case will happen when either VAL is not present in the array

or it is equal to the last element of the array. In both the cases, n comparisons will

have to be made.

 However, the performance of the linear search algorithm can be improved by

using a sorted array.Array operations

20

PNC CS

Binary Search

 Binary search is a searching algorithm that works efficiently with a

sorted list.

 The mechanism of binary search can be better understood by an

analogy of a telephone directory.

 When we are searching for a particular name in a directory, we

first open the directory from the middle and then decide whether to

look for the name in the first part of the directory or in the second

part of the directory.

 Again, we open some page in the middle and the whole process is

repeated until we finally find the right nameArray operations

21

PNC CS

 We first open the dictionary somewhere in the middle.

 Then, we compare the first word on that page with the desired

word whose meaning we are looking for.

 If the desired word comes before the word on the page, we look in

the first half of the dictionary, else we look in the second half.

 Again, we open a page in the first half of the dictionary and

compare the first word on that page with the desired word and

repeat the same procedure until we finally get the word.

 The same mechanism is applied in the binary search.
Array operations

22

PNC CS

 Now, let us consider how this mechanism is applied to search for a value in a sorted array.

 Consider an array A[] that is declared and initialized as

 int A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 and the value to be searched is VAL = 9. The algorithm will proceed in the following manner.

 BEG = 0, END = 10, MID = (0 + 10)/2 = 5

 Now, VAL = 9 and A[MID] = A[5] = 5

 A[5] is less than VAL, therefore, we now search for the value in the second half of the array. So,

 we change the values of BEG and MID.

 Now, BEG = MID + 1 = 6, END = 10, MID = (6 + 10)/2 =16/2 = 8

 VAL = 9 and A[MID] = A[8] = 8

 A[8] is less than VAL, therefore, we now search for the value in the second half of the segment.

 So, again we change the values of BEG and MID.

 Now, BEG = MID + 1 = 9, END = 10, MID = (9 + 10)/2 = 9

 Now, VAL = 9 and A[MID] = 9.

Array operations

23

PNC CS

Array operations

24

PNC CS

Complexity of Binary Search Algorithm

 O(log2n)

Array operations

25

PNC CS

sorting

Array operations

26

PNC CS

Array operations

27

Thank you

PNC CS

TWO-DIMENSIONAL
ARRAYS

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan Col lege, Pudukad

PNC CS

◦One-dimensional arrays are organized linearly in only one direction.

◦But at times, we need to store data in the form of grids or tables.

◦Here, the concept of single-dimension arrays is extended to

incorporate two-dimensional data structures.

◦A two-dimensional array is specified using two subscripts where the

first subscript denotes the row and the second denotes the column.

◦The C compiler treats a two-dimensional array as an array of one-

dimensional arrays.

Tw o dimensional arrays 2

PNC CS

Declaring Two-dimensional Arrays

◦A two-dimensional array is declared as:

◦data_type array_name[row_size][column_size];

◦Therefore, a two-dimensional m × n array is an array that contains

m × n data elements and each element is accessed using two

subscripts, i and j, where i <= m and j <= n.

◦int marks[3][5];

Tw o dimensional arrays 3

PNC CS

Tw o dimensional arrays 4

PNC CS

Tw o dimensional arrays 5

PNC CS

◦A 2D array is treated as a collection of 1D arrays.

◦Each row of a 2D array corresponds to a 1D array

consisting of n elements, where n is the number of

columns.

Tw o dimensional arrays 6

PNC CS

Tw o dimensional arrays 7

PNC CS

◦ Although we have shown a rectangular picture of a two-dimensional array, in the

memory, these elements actually will be stored sequentially.

◦ There are two ways of storing a two-dimensional array in the memory.

◦ The first way is the row major order and the second is the column major order.

◦ Let us see how the elements of a 2D array are stored in a row major order.

◦ Here, the elements of the first row are stored before the elements of the second

and third rows.

◦ That is, the elements of the array are stored row by row where n elements of the

first row will occupy the first n locations.

Tw o dimensional arrays 8

PNC CS

Tw o dimensional arrays 9

PNC CS

Tw o dimensional arrays 10

PNC CS

Tw o dimensional arrays 11

PNC CS

Tw o dimensional arrays 12

PNC CS

Initializing Two-dimensional Arrays

◦int marks[2][3]={90, 87, 78, 68, 62, 71};

◦int marks[2][3]={{90,87,78},{68, 62, 71}};

Tw o dimensional arrays 13

PNC CS

Accessing the Elements of Two-dimensional Arrays

◦ 2D array are stored in contiguous memory locations.

◦ In case of one-dimensional arrays, we used a single for loop to vary the

index i in every pass, so that all the elements could be scanned.

◦ Since the two-dimensional array contains two subscripts, we will use two for

loops to scan the elements.

◦ The first for loop will scan each row in the 2D array and the second for

loop will scan individual columns for every row in the array.

Tw o dimensional arrays 14

PNC CS

OPERATIONS ON TWO-DIMENSIONAL ARRAYS

◦Two-dimensional arrays can be used to implement the mathematical

concept of matrices.

◦ In mathematics, a matrix is a grid of numbers, arranged in rows

and columns.

Tw o dimensional arrays 15

PNC CS

Tw o dimensional arrays 16

PNC CS

MULTI-dimensional ARRAYS

Tw o dimensional arrays 17

PNC CS

◦A multi-dimensional array is declared and initialized

the same way we declare and initialize one- and two-

dimensional arrays.

◦A multi-dimensional array can contain as many indices as

needed and as the requirement of memory increases with

the number of indices used.

Tw o dimensional arrays 18

PNC CS

Tw o dimensional arrays 19

Thank you

PNC CS

SPARSE MATRIX
Prepared by

Deepthi M Pisharody

AssAssisstant Professor

Prajyoti Niketan College, Pudukad

PNC CS

•Sparse matrix is a matrix that has large number of
elements with a zero value.

• In order to efficiently utilize the memory, specialized
algorithms and data structures that take advantage of the
sparse structure should be used.

• If we apply the operations using standard matrix
structures and algorithms to sparse matrices, then the
execution will slow down and the matrix will consume
large amount of memory

Sparse matrix 2

PNC CS

•Sparse data can be easily compressed, which in turn can
significantly reduce memory usage.

Sparse matrix 3

PNC CS

There are two types of sparse matrices.

•In the first type of sparse matrix, all elements above the main
diagonal have a zero value.

•This type of sparse matrix is also called a (lower) triagonal
matrix because if you see it a lower triangular matrix, Ai,j = 0
where i < j.

•An n×n lower-triangular matrix A has one non-zero element
in the first row, two non-zero elements in the second row and
likewise n non-zero elements in the nth row

Sparse matrix 4

PNC CS

Sparse matrix 5

PNC CS

• To store a lower-triangular matrix efficiently in the memory, we can use a
one-dimensional array which stores only non-zero elements.

• The mapping between a two-dimensional matrix and a one-dimensional array
can be done

• in any one of the following ways:

• (a) Row-wise mapping—Here the contents of array A[] will be {1, 5,

• 3, 2, 7, –1, 3, 1, 4, 2, –9, 2, –8, 1, 7}

• (b) Column-wise mapping—Here the contents of array A[] will be

• {1, 5, 2, 3, –9, 3, 7, 1, 2, –1, 4, –8, 2, 1, 7}

Sparse matrix 6

PNC CS

upper-triangular matrix

• In an upper-triangular matrix, Ai,j = 0 where i > j.

• An n×n upper-triangular matrix A has n non-zero elements in
the first row, n–1 non-zero elements in the second row and
likewise one non-zero element in the nth row.

Sparse matrix 7

PNC CS

Sparse matrix 8

PNC CS

tri-diagonal matrix.

• There is another variant of a sparse matrix, in which elements with a non-
zero value can appear only on the diagonal or immediately above or below
the diagonal.

• This type of matrix is also called a tri-diagonal matrix.

• Hence in a tridiagonal matrix, Ai,j = 0, where |i – j| > 1.

• In a tridiagonal matrix, if elements are present on

• (a) the main diagonal, it contains non-zero elements for i=j. In all, there will
be n elements.

• (b) below the main diagonal, it contains non-zero elements for i=j+1. In all,
there will be n–1 elements.

• (c) above the main diagonal, it contains non-zero elements for i=j–1. In all,
there will be n–1 elements.

Sparse matrix 9

PNC CS

Sparse matrix 10

PNC CS

• To store a tri-diagonal matrix efficiently in the memory,

• we can use a one-dimensional array that stores only non-zero elements.

• The mapping between a two-dimensional matrix and a one-dimensional array
can be done in any one of the following ways:

• (a) Row-wise mapping—Here the contents of array A[] will be

• {4, 1, 5, 1, 2, 9, 3, 1, 4, 2, 2, 5, 1, 9, 8, 7}

• (b) Column-wise mapping—Here the contents of array A[] will be

• {4, 5, 1, 1, 9, 2, 3, 4, 1, 2, 5, 2, 1, 8, 9, 7}

• (c) Diagonal-wise mapping—Here the contents of array A[] will be

• {5, 9, 4, 5, 8, 4, 1, 3, 2, 1, 7, 1, 2, 1, 2, 9}

Sparse matrix 11

PNC CS

Sparse Matrix Representation

• Array

• Linked List

Sparse matrix 12

PNC CS

Single Linear List Example

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

list =

row 0 0 1 1 3 3

column 2 4 2 3 1 2

value 3 4 5 7 2 6

PNC CS

EXAMPLE:

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

INDEX ROW NO. COL. NO. VALUES

0 0 2 3

1 0 4 4

2 1 2 5

3 1 3 7

4 3 1 2

5 3 2 6

Sparse matrix 14

PNC CS

Chain Representation

Node structure.

row col

nextvalue

PNC CS

Single Chain

row 1 1 2 2 4 4

list = column 3 5 3 4 2 3

value 3 4 5 7 2 6

1 3

3

1 5

4

2

5

2

7

4

2

4

6

3 4 3

null

firstNode

2

PNC CS

One Linear List Per Row

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

row1 = [(3, 3), (5,4)]

row2 = [(3,5), (4,7)]

row3 = []

row4 = [(2,2), (3,6)]

PNC CS

Array Of Row Chains

Node structure.

next

valuecol

PNC CS

Chain Representation

row col

value next

Node structure:

Sparse matrix 19

PNC CS

Single Chain

row 1 1 2 2 4 4

list = column 3 5 3 4 2 3

value 3 4 5 7 2 6

4 3

6 nul

firstNode

1 3 1 5 2 3 2 4 4 2

3 4 5 7 2 l

Sparse matrix 20

PNC CS

One Linear List Per Row

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

row1 = [(3, 3), (5,4)]

row2 = [(3,5), (4,7)]

row3 = []

row4 = [(2,2), (3,6)]

valuecolumn

Sparse matrix 21

PNC CS

Array Of Row Chains

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

row[]

33

null

45

53

null

74

22

null

63

null

PNC CS

Row Lists

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0
null

1 3 3 1 5 4

2 3 5 2 4 7

4 2 2 4 3 6

n

n

n

PNC CS

Column Lists

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

1 3 3 1 5 4

2 3 5 2 4 7

4 2 2 4 3 6

n

nn

PNC CS

Orthogonal Lists

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0
null

row[]

1 3 3 1 5 4

2 3 5 2 4 7

4 2 2 4 3 6

n n

n

nnn

PNC CS

Sparse matrix 26

Thank You

PNC CS

LINKED LIST

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

INTRODUCTION

 An array is a linear collection of data elements in which the elements are stored in
consecutive memory locations.

 While declaring arrays, we have to specify the size of the array, which will restrict
the number of elements that the array can store.

 For example, if we declare an array as int marks[10], then the array can store a
maximum of 10 data elements but not more than that.

 But what if we are not sure of the number of elements in advance?

 Moreover, to make efficient use of memory, the elements must be stored randomly
at any location rather than in consecutive locations.

 So, there must be a data structure that removes the restrictions on the maximum
number of elements and the storage condition to write efficient programs.

PNC CS

 Linked list is a data structure that is free from the aforementioned
restrictions.

 A linked list does not store its elements in consecutive memory
locations and the user can add any number of elements to it.

 However, unlike an array, a linked list does not allow random
access of data.

 Elements in a linked list can be accessed only in a sequential
manner.

 But like an array, insertions and deletions can be done at any
point in the list in a constant time.

PNC CS

 A linked list, in simple terms, is a linear collection of data
elements.

 These data elements are called nodes.

 Linked list is a data structure which in turn can be used to
implement other data structures.

 Thus, it acts as a building block to implement data structures
such as stacks, queues, and their variations.

 A linked list can be perceived as a train or a sequence of nodes in
which each node contains one or more data fields and a pointer to
the next node.

PNC CS

PNC CS

we can see a linked list in which every node contains two
parts, an integer and a pointer to the next node.

 The left part of the node which contains data may
include a simple data type, an array, or a structure.

The right part of the node contains a pointer to the next
node (or address of the next node in sequence).

The last node will have no next node connected to it, so it
will store a special value called NULL

PNC CS

 the NULL pointer is represented by X.

While programming, we usually define NULL as –1.

Hence, a NULL pointer denotes the end of the list.

 Since in a linked list, every node contains a pointer to
another node which is of the same type, it is also called a
self-referential data type.

PNC CS

 Linked lists contain a pointer variable START that stores the
address of the first node in the list.

 We can traverse the entire list using START which contains the
address of the first node; the next part of the first node in turn
stores the address of its succeeding node.

 Using this technique, the individual nodes of the list will form a
chain of nodes.

 If START = NULL, then the linked list is empty and contains no
nodes.

PNC CS

 In C, we can implement a linked list using the following
code:

struct node

{

int data;

struct node *next;

};

PNC CS

 Linked lists provide an efficient way of storing related data
and perform basic operations such as insertion, deletion,
and updation of information at the cost of extra space
required for storing address of the next node.

PNC CS

PNC CS

 In order to form a linked list, we need a structure called node
which has two fields, DATA and NEXT.

 DATA will store the information part and NEXT will store the
address of the next node in sequence.

PNC CS

 we can see that the variable START is used tostore the address of the first
node. Here, in this example, START = 1, so the first data is stored at
address 1, which is H.

 The corresponding NEXT stores the address of the next node, which is 4. So,
we will look at address 4 to fetch the next data item.

 The second data element obtained from address 4 is E.

 Again, we see the corresponding NEXT to go to the next node.

 From the entry in the NEXT, we get the next address, that is 7, and fetch L as
the data.

 We repeat this procedure until we reach a position where the NEXT entry
contains –1 or NULL, as this would denote the end of the linked list.

PNC CS

 When we traverse DATA and NEXT in this manner, we finally see
that the linked list in the above example stores characters that
when put together form theword HELLO.

PNC CS

PNC CS

There is no ambiguity in traversing through the list
because each list maintains a separate Start pointer,
which gives the address of the first node of their
respective linked lists.

 The rest of the nodes are reached by looking at the value
stored in the NEXT.

PNC CS

L I N K E D L I S T

P R E PA R E D B Y

D E E P T H I M P I S H A R O DY

A S S T P R O F E S S O R

PNC CS

LINKED LISTS VERSUS ARRAYS

• Both arrays and linked lists are a linear collection of data elements.

• But unlike an array, a linked list does not store its nodes in

consecutive memory locations.

• Another point of difference between an array and a linked list is that a

linked list does not allow random access of data.

• Nodes in a linked list can be accessed only in a sequential manner.

• But like an array, insertions and deletions can be done at any point in

the list in a constant time.

PNC CS

• Another advantage of a linked list over an array is that we can add any number of

elements in the list.

• This is not possible in case of an array.

• For example, if we declare an array as int marks[20], then the array can store a

maximum of 20 data elements only.

• There is no such restriction in caseof a linked list.

• Thus, linked lists provide an efficient way of storing related data and performing basic

operations such as insertion, deletion, and updation of information at the cost of extra

space required for storing the address of next nodes.

PNC CS

PNC CS

MEMORY ALLOCATION AND DE -ALLOCATION FOR A LINKED LIST

• We have seen how a linked list is represented in the memory.

• If we want to add a node to an already existing linked list in the memory, we first find free space

in the memory and then use it to store the information.

• The linked list contains the roll number of students, marks obtained by them in Biology, and

finally a NEXT field which stores the address of the next node in sequence.

• Now, if a new student joins the class and is asked to appear for the same test that the other

students had taken, then the new student’s marks should also be recorded in the linked list.

• For this purpose, we find a free space and store the information there.

• In Fig. the grey shaded portion shows free space, and thus we have 4 memory locations available.

• We can use any one of them to store our data.

PNC CS

• Now, the question is which part of the memory is available and which part is

occupied?

• When we delete a node from a linked list, then who changes the status of the

memory occupied by it

• from occupied to available?

• The answer is the operating system.

• The computer does it on its own without any intervention from the user or the

• programmer.

• As a programmer, you just have to take care of the code to perform insertions and

deletions in the list.

• The computer maintains a list of all free memory cells. This list of available space

is called the free pool.

PNC CS

PNC CS

Thank you

PNC CS

TYPES OF LINKED LIST- LINEAR LINKED LIST

Prepared by
Deepthi M Pisharody

Asst Professor
Prajyoti Niketan College, Pudukad

PNC CS

SINGLY LINKED LISTS

A singly linked list is the simplest type of linked
list in which every node contains some data and a
pointer to the next node of the same data type.

By saying that the node contains a pointer to the
next node, we mean that the node stores the
address of the next node in sequence.

A singly linked list allows traversal of data only in
one way

PNC CS

PNC CS

TRAVERSING A LINKED LIST

Traversing a linked list means accessing the nodes of the list in order
to perform some processing on them.

Remember a linked list always contains a pointer variable START
which stores the address of the first node of the list.

End of the list is marked by storing NULL or –1 in the NEXT field of
the last node.

For traversing the linked list, we also make use of another pointer
variable PTR which points to the node that is currently being
accessed.

PNC CS

PNC CS

 In this algorithm, we first initialize PTR with the address of
START.

 So now, PTR points to the first node of the linked list.

 Then in Step 2, a while loop is executed which is repeated till
PTR processes the last node, that is until it encounters NULL.

 In Step 3, we apply the process (e.g., print) to the current node,
that is, the node pointed by PTR.

 In Step 4, we move to the next node by making the PTR variable
point to the node whose address is stored in the NEXT field.

PNC CS

An algorithm to count the number of nodes in a linked
list.

To do this, we will traverse each and every node of the
list and while traversing every individual node, we will
increment the counter by 1.

Once we reach NULL,that is, when all the nodes of the
linked list have been traversed, the final value of the
counter will be displayed.

PNC CS

SEARCHING FOR A VALUE IN A LINKED LIST

 Searching a linked list means to find a particular element in the linked list.

 A linked list consists of nodes which are divided into two parts, the
information part and the next part.

 So searching means finding whether a given value is present in the
information part of the node or not.

 If it is present, the algorithm returns the address of the node that contains the
value.

PNC CS

PNC CS

 In Step 1, we initialize the pointer variable PTR with START that
contains the address of the first node.

 In Step 2, a while loop is executed which will compare every
node’s DATA with VAL for which the search is being made.

 If the search is successful, that is, VAL hasbeen found, then the
address of that node is stored in POS and the control jumps to the
last statement of the algorithm.

 However, if the search is unsuccessful, POS is set to NULL which
indicates that VAL is not present in the linked list.

PNC CS

PNC CS

INSERTING A NEW NODE IN A LINKED LIST

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.

Case 4: The new node is inserted before a given node.

PNC CS

INSERTING A NODE AT THE BEGINNING OF A LINKED LIST

PNC CS

PNC CS

 In Step 1, we first check whether memory is available for the new node.

 If the free memory has exhausted, then an OVERFLOW message is printed.

 Otherwise, if a free memory cell is available, then we allocate space for the
new node.

 Set its DATA part with thegiven VAL and the next part is initialized with
the address of the first node of the list, which is stored in START.

PNC CS

 Now, since the new node is added as the first node of the list, it will now be
known as the START node, that is, the START pointer variable will now
hold the address of the NEW_NODE. Note the

 following two steps:

 Step 2: SET NEW_NODE = AVAIL

 Step 3: SET AVAIL = AVAIL -> NEXT

 These steps allocate memory for the new node. In C, there are functions like
malloc(), alloc, and calloc() which automatically do the memory
allocation on behalf of the user.

PNC CS

INSERTING A NODE AT THE END OF A LINKED LIST

PNC CS

PNC CS

INSERTING A NODE AT THE END OF A LINKED LIST

 In Step 6, we take a pointer variable PTR and initialize it with
START.

 That is, PTR now points to the first node of the linked list. In the
while loop, we traverse through the linked list to reach the last
node.

 Once we reach the last node, in Step 9, we change the NEXT
pointer of the last node to store the address of the new node.

 Remember that the NEXT field of the new node contains NULL,
which signifies the end of the linked list.

PNC CS

INSERTING A NODE AFTER A GIVEN NODE IN A LINKED LIST

PNC CS

PNC CS

PNC CS

 In Step 5, we take a pointer variable PTR and initialize it with START.

 That is, PTR now points to the first node of the linked list.

 Then we take another pointer variable PREPTR which will be used to store
the address of the node preceding PTR.

 Initially, PREPTR is initialized to PTR. So now, PTR, PREPTR, and START
are all pointing to the first node of the linked list.

 In the while loop, we traverse through the linked list to reach the node that
has its value equal to NUM.

 We need to reach this node because the new node will be inserted after this
node.

 Once we reach this node, in Steps 10 and 11, we change the NEXT pointers
in such a way that new node is inserted after the desired node.

PNC CS

Thank you

PNC CS

DELETING A NODE FROM A LINKED LISTLINEAR LINKED LIST

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

DELETING A NODE FROM A LINKED LIST

Case 1: The first node is deleted.

Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.

PNC CS

 Underflow is a condition that occurs when we try to delete a node
from a linked list that is empty.

 This happens when START = NULL or when there are no more
nodes to delete.

 Note that when we delete a node from a linked list, we actually
have to free the memory occupied by that node.

 The memory is returned to the free pool so that it can be used to
store other programs and data.

 Whatever be the case of deletion, we always change the AVAIL
pointer so that it points to the address that has been recently
vacated

PNC CS

DELETING THE FIRST NODE FROM A LINKED LIST

PNC CS

PNC CS

 In Step 1, we check if the linked list exists or not.

 If START = NULL, then it signifies that there are no nodes in the list and the
control is transferred to the last statement of the algorithm.

 However, if there are nodes in the linked list, then we use a pointer variable
PTR that is set to point to the first node of the list.

 For this, we initialize PTR with START that stores the address of the first
node of the list.

 In Step 3, START is made to point to the next node in sequence and finally
the memory occupied by the node pointed by PTR (initially the first node of
the list) is freed and returned to the free pool.

PNC CS

DELETING THE LAST NODE FROM A LINKED LIST

PNC CS

PNC CS

 In Step 2, we take a pointer variable PTR and initialize it with
START.

 That is, PTR now points to the first node of the linked list.

 In the while loop, we take another pointer variable PREPTR
such that it always points to one node before the PTR.

 Once we reach the last node and the second last node, we set the
NEXT pointer of the second last node to NULL, so that it now
becomes the (new) last node of the linked list.

 The memory of the previous last node is freed and returned back
to the free pool.

PNC CS

DELETING THE NODE AFTER A GIVEN NODE IN A LINKED LIST

PNC CS

PNC CS

PNC CS

 In Step 2, we take a pointer variable PTR and initialize it with
START.

 That is, PTR now points to the first node of the linked list.

 In the while loop, we take another pointer variable PREPTR
such thatit always points to one node before the PTR.

 Once we reach the node containing VAL and the node
succeeding it, we set the next pointer of the node containing VAL
to the address contained in next field of the node succeeding it.

 The memory of the node succeeding the given node is freed and
returned back to the free pool.

PNC CS

Thank You

PNC CS

Various types of linked list

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

CIRCULAR LINKED LISTs

• In a circular linked list, the last node contains a pointer to the first
node of the list.

• While traversing a circular linked list, we can begin at any node and
traverse the list in any direction, forward or backward, until we
reach the same node where we started.

• Thus, a circular linked list has no beginning and no ending.

• The only downside of a circular linked list is the complexity of
iteration.

PNC CS

PNC CS

PNC CS

• Circular linked lists are widely used in operating systems for task

maintenance.

• When we are surfing the Internet, we can use the Back button and the

Forward button to move to the previous pages that we have already

visited. How is this done? The answer is simple.

• A circular linked list is used to maintain the sequence of the Web pages

visited.

• Traversing this circular linked list either in forward or backward direction

helps to revisit the pages again using Back and Forward buttons.

• Actually, this is done using either the circular stack or the circular queue

PNC CS

• We can traverse the list until we find the NEXT entry that

contains the address of the first node of the list.

• This denotes the end of the linked list, that is, the node that

contains the address of the first node is actually the last node of

the list.

PNC CS

PNC CS

DOUBLY LINKED LISTS

• A doubly linked list or a two-way linked list is a more

complex type of linked list which contains a pointer to

the next as well as the previous node in the sequence.

• Therefore, it consists of three parts—data, a pointer to

the next node, and a pointer to the previous node

PNC CS

PNC CS

PNC CS

• The PREV field of the first node and the NEXT field of the last

node will contain NULL.

• The PREV field is used to store the address of the preceding

node, which enables us to traverse the list in the backward

direction.

PNC CS

• A doubly linked list calls for more space per node and more

expensive basic operations.

• However, a doubly linked list provides the ease to manipulate

the elements of the list as it maintains pointers to nodes in both

the directions (forward and backward).

• The main advantage of using a doubly linked list is that it

makes searching twice as efficient.

PNC CS

PNC CS

CIRCULAR DOUBLY LINKED LISTs

• A circular doubly linked list or a circular two-way linked list is a more

complex type of linked list which contains a pointer to the next as well as

the previous node in the sequence.

• The difference between a doubly linked and a circular doubly linked list is

same as that exists between a singly linked list and a circular linked list.

• The circular doubly linked list does not contain NULL in the previous field

of the first node and the next field of the last node.

• Rather, the next field of the last node stores the address of the first node

of the list, i.e., START.

• Similarly, the previous field of the first field stores the address of the last

node.

PNC CS

PNC CS

PNC CS

APPLICATIONS OF LINKED LISTS

• Polynomial Representation

PNC CS

Polynomial Representation

• Let us see how a polynomial is represented in the memory using a linked list. Consider a

polynomial 6x3 + 9x2 + 7x + 1. Every individual term in a polynomial consists of two parts, a

coefficient

• and a power. Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as their

• powers respectively

PNC CS

Thank you

PNC CS

STACKS

Prepared by

Deepthi M Pisharody

Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

Stack is an important data structure which stores its
elements in an ordered manner.

Eg:- a pile of plates where one plate is placed on top of
another.

When you want to remove a plate, you remove the
topmost plate first. Hence, you can add and remove an
element (i.e., A plate) only at/from one position which is
the topmost position.

Stack 2

PNC CS

Stack 3

PNC CS

A stack is a linear data structure which uses the
same principle, i.e., the elements in a stack are
added and removed only from one end, which is
called the TOP.

 Hence, a stack is called a LIFO (Last-In-First-Out)
data structure, as the element that was inserted last
is the first one to be taken out.

 Stacks can be implemented using either arrays or linked lists

Stack 4

PNC CS

STACKS IN COMPUTE SCIENCE

 function calls. Consider an example, where we are
executing function A. In the course of its execution,
function A calls another function B. Function B in turn
calls another function C, which calls function D.

Stack 5

PNC CS

Stack 6

PNC CS

 In order to keep track of the returning point of each active
function, a special stack called system stack or call stack is used.

 Whenever a function calls another function, the calling function is
pushed onto the top of the stack.

 This is because after the called function gets executed, the
control is passed back to the calling function.

Stack 7

PNC CS

Stack 8

PNC CS

Now when function E is executed, function D will be
removed from the top of the stack and executed.

Once function D gets completely executed, function C
will be removed from the stack for execution.

The whole procedure will be repeated until all the
functions get executed

Stack 9

PNC CS

 The system stack ensures a proper execution order of functions.

 Therefore, stacks are frequently used in situations where the order
of processing is very important, especially when the processing
needs to be postponed until other conditions are fulfilled

Stack 10

PNC CS

ARRAY REPRESENTATION OF STACKS

Stacks can be represented as a linear array.

Every stack has a variable called top associated with it,
which is used to store the address of the topmost element
of the stack.

 It is this position where the element will be added to or
deleted from.

There is another variable called max, which is used to
store the maximum number of elements that the stack can
hold.

Stack 11

PNC CS

 If TOP = NULL, then it indicates that the stack is empty-
underflow

 and if TOP = MAX–1, then the stack is full- overflow.

 (You must be wondering why we have written MAX–1. It is
because array indices start from 0.)

Stack 12

PNC CS

Stack 13

PNC CS

OPERATIONS ON A STACK

A stack supports three basic operations:
push, pop, and peek.

The push operation adds an element to the top of the
stack

 The pop operation removes the element from the top of
the stack.

The peek operation returns the value of the topmost
element of the stack.

Stack 14

PNC CS

PUSH OPERATION

 The push operation is used to insert an element into the stack.

 The new element is added at the topmost position of the stack.

 However, before inserting the value, we must first check if
TOP=MAX–1, because if that is the case, then the stack is full and
no more insertions can be done.

 If an attempt is made to insert a value in a stack that is already
full, an OVERFLOW message is printed.

Stack 15

PNC CS

To insert an element with value 6, we first check if
TOP=MAX–1.

 If the condition is false, then we increment the value of
TOP and store the new element at the position given by
stack[TOP].

Stack 16

PNC CS

Stack 17

PNC CS

Stack 18

PNC CS

POP OPERATION

 The pop operation is used to delete the topmost element from the
stack.

 However, before deleting the value, we must first check if TOP=NULL
because if that is the case, then it means the stack is empty and no
more deletions can be done.

 If an attempt is made to delete a value from a stack that is already
empty, an UNDERFLOW message is printed.

 To delete the topmost element, we first check if TOP=NULL.

 If the condition is false, then we decrement the value pointed
by TOP.

Stack 19

PNC CS

Stack 20

PNC CS

Stack 21

PNC CS

PEEK OPERATION

Peek is an operation that returns the value of the
topmost element of the stack without deleting it from the
stack.

However, the Peek operation first checks if the stack is
empty, i.e., if TOP = NULL, then an appropriate message
is printed, else the value is returned.

Stack 22

PNC CS

Stack 23

PNC CS

Stack 24

PNC CS

Stack 25

Thank You

PNC CS

S TA C K S U S I N G L I N K E D
L I S T

P R E PA R E D B Y

D E E P T H I M P I S H A R O DY

A S S T P R O F E S S O R

P R A J YOT I N I K E TA N C O L L E G E ,

P U D U K A D

PNC CS

LINKED REPRESENTATION OF STACKS

• A stack is created using an array.

• This technique of creating a stack is easy, but the drawback is that

the array must be declared to have some fixed size.

• In case the stack is a very small one or its maximum size is known

in advance, then the array implementation of the stack gives an

efficient implementation.

• But if the array size cannot be determined in advance,then the other

alternative, i.e., Linked representation, is used.
Stack using linked list 2

PNC CS

• The storage requirement of linked representation of the

stack with n elements is O(n), and the typical time

requirement for the operations is O(1).

• In a linked stack, every node has two parts—one that stores

data and another that stores the address of the next node.

• The START pointer of the linked list is used as TOP.

• All insertions and deletions are done at the node pointed by

TOP. Stack using linked list 3

PNC CS

Stack using linked list 4

PNC CS

OPERATIONS ON A LINKED STACK

• Push Operation

• The push operation is used to insert an element into the

stack.

• The new element is added at the topmost position of the

stack

Stack using linked list 5

PNC CS

• To insert an element with value 9, we first check if TOP=NULL.

• If this is the case, then we allocate memory for a new node, store the

value in its DATA part and NULL in its NEXT part.

• The new node will then be called TOP.

• However, if TOP!=NULL, then we insert the new node at the

beginning of the linked stack and name this new node as TOP.

Stack using linked list 6

PNC CS

Stack using linked list 7

PNC CS

Stack using linked list 8

PNC CS

• In Step 1, memory is allocated for the new node.

• In Step 2, the DATA part of the new node is initialized with the

value to be stored in the node.

• In Step 3, we check if the new node is the first node of the linked

list.

• This is done by checking if TOP = NULL.

• In case the IF statement evaluates to true, then NULL is stored in

the NEXT part of the node and the new node is called TOP.

• However, if the new node is not the first node in the list, then it is

added before the first node of the list (that is, the TOP node) and

termed as TOP.

Stack using linked list 9

PNC CS

POP OPERATION

• The pop operation is used to delete the topmost element from a

stack.

• However, before deleting the value, we must first check if

TOP=NULL, because if this is the case, then it means that the stack is

empty and no more deletions can be done.

• If an attempt is made to delete a value from a stack that is already

empty, an UNDERFLOW message is printed.

Stack using linked list 10

PNC CS

Stack using linked list 11

PNC CS

Stack using linked list 12

PNC CS

• In case TOP!=NULL, then we will delete the node pointed

by TOP, and make TOP point to the second element of the

linked stack.

• In Step 1, we first check for the UNDERFLOW condition.

• In Step 2, we use a pointer PTR that points to TOP.

• In Step 3, TOP is made to point to the next node in

sequence.

• In Step 4, the memory occupied by PTR is given back to

the free pool.

Stack using linked list 13

PNC CS

Thank you

Stack using linked list 14

PNC CS

APPLICATIONS OF
STACK
PREPARED BY

MS DEEPTHI M PISHARODY

ASST PROFESSOR

PRAJYOTI NIKETAN COLLEGE, PUDUKAD

PNC CS

APPLICATIONS OF STACK

• Reversing a list

• Parentheses checker

• Conversion of an infix expression into a postfix expression

• Evaluation of a postfix expression

• Conversion of an infix expression into a prefix expression

• Evaluation of a prefix expression

• Recursion

• Tower of Hanoi

PNC CS

REVERSING A LIST

• A list of numbers can be reversed by reading each number from

an array starting from the first index and pushing it on a stack.

• Once all the numbers have been read, the numbers can be

popped one at a time and then stored in the array starting from

the first index.

PNC CS

int stk[10];

int top=–1;

int pop();

void push(int);

PNC CS

void main()

{

int val, n, i,

arr[10];

clrscr();

printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);

printf("\n Enter the elements of the array : ");

for(i=0;i<n;i++)

scanf("%d", &arr[i]);

PNC CS

for(i=0;i<n;i++)

push(arr[i]);

for(i=0;i<n;i++)

{

val = pop();

arr[i] = val;

}

printf("\n The reversed array is : ");

for(i=0;i<n;i++)

printf("\n %d", arr[i]);

getche"();

}

PNC CS

void push(int val)

{

stk[++top] = val;

}

int pop()

{

return(stk[top––]);

}

Output

Enter the number of elements in the array : 5

Enter the elements of the array : 1 2 3 4 5

The reversed array is : 5 4 3 2 1

PNC CS

RECURSION

• A recursive function is defined as a function that calls itself to solve a smaller version of its task

until a final call is made which does not require a call to itself.

• Since a recursive function repeatedly calls itself, it makes use of the system stack to temporarily

store the return address and local variables of the calling function.

• Every recursive solution has two major cases.

PNC CS

• Base case, in which the problem is simple enough to be solved

directly without making any further calls to the same function.

• Recursive case, in which first the problem at hand is divided

into simpler sub-parts. Second the function calls itself but with

sub-parts of the problem obtained in the first step. Third, the

result is obtained by combining the solutions of simpler sub-

parts

PNC CS

PNC CS

PNC CS

PNC CS

TYPES OF RECURSION

• Any recursive function can be characterized based on:

• whether the function calls itself directly or indirectly (direct or indirect

recursion),

• whether any operation is pending at each recursive call (tailrecursive or

not), and

• the structure of the calling pattern (linear or tree-recursive).

PNC CS

• Direct Recursion

• A function is said to be directly recursive if it explicitly calls itself.

• Here, the function Func() calls itself for all positive values of n, so it is

said to be a directly recursive function.

• Indirect Recursion

• A function is said to be indirectly recursive if it contains a call to another

function which ultimately calls it. These two functions are indirectly

recursive as they both call each other

PNC CS

PNC CS

TAIL RECURSION

• A recursive function is said to be tail recursive if no operations are pending to be performed when

the recursive function returns to its caller.

• when the called function returns, the returned value is immediately returned from the calling

function.

• Tail recursive functions are highly desirable because they are much more efficient to use as the

amount of information that has to be stored on the system stack is independent of the number of

recursive calls.

PNC CS

PNC CS

• Whenever there is a pending operation to be performed, the function becomes non-tail recursive. In

such a non-tail recursive function, information about each pending operation must be stored, so the

amount of information directly depends on the number of calls.

PNC CS

PNC CS

• In simple words, a recursive function is said to be linearly recursive when the pending operation (if

any) does not make another recursive call to the function.

• For example, observe the last line of recursive factorial function.

• The factorial function is linearly recursive as the pending operation involves only multiplication to

be performed and does not involve another recursive call to Fact.

PNC CS

• On the contrary, a recursive function is said to be tree recursive (or non-linearlyrecursive)

if the pending operation makes another recursive call to the function.

• For example, the Fibonacci function in which the pending operations recursively call

the Fib onacci function.

PNC CS

PNC CS

Thank you

PNC CS

Arithmetic
expressions
Prepared by
Ms Deepthi M Pisharody
Asst Professor
Prajyoti Niketan College, Pudukad

PNC CS

Applications of stack

• Reversing a list

• Parentheses checker

• Conversion of an infix expression into a postfix expression

• Evaluation of a postfix expression

• Conversion of an infix expression into a prefix expression

• Evaluation of a prefix expression

• Recursion

• Tower of Hanoi

PNC CS

Arithmetic expressions

• An arithmetic expressions consists of operators
and operands.

• Operands are numeric values or numeric
constants

• Operators are used in arithmetic expression.

PNC CS

Various notations for arithmetic
expressions

• Prefix

• Postfix

• Infix

PNC CS

Infix notation

• The operator is placed in between the operands.

• a+b

• a*b

• a+b-c

PNC CS

• Although it is easy for us to write expressions using infix

notation, computers find it difficult to parse as the computer

needs a lot of information to evaluate the expression.

• Information is needed about operator precedence and

associativity rules, and brackets which override these rules.

• So, computers work more efficiently with expressions written

using prefix and postfix notations.

PNC CS

Postfix notation

• Postfix notation was developed by Jan Łukasiewicz

who was a Polish logician, mathematician, and

philosopher.

• His aim was to develop a parenthesis-free prefix

notation (also known as Polish notation) and a

postfix notation, which is better known as Reverse

Polish Notation or RPN

PNC CS

Postfix notation,

• In postfix notation, as the name suggests, the
operator is placed after the operands.

• Eg: AB+

• AB*

• AB-

• The order of evaluation of a postfix expression is always from
left to right.

• Even brackets cannot alter the order of evaluation

PNC CS

• A postfix operation does not even follow the rules of

operator precedence.

• The operator which occurs first in the expression is

operated first on the operands.

PNC CS

Prefix notation

• In prefix notation, the operator is placed before the operands.

• +AB

• -AB

• While evaluating a prefix expression, the operators are applied

to the operands that are present immediately on the right of the

operator.

• Like postfix, prefix expressions also do not follow the rules of

operator precedence and associativity, and even brackets cannot

alter the order of evaluation.

PNC CS

Conversion of an Infix Expression
into a Prefix Expression

• (A + B) * C

(+AB)*C

*+ABC

PNC CS

• (A–B) * (C+D)

[–AB] * [+CD]

*–AB+CD

PNC CS

Conversion of an Infix Expression
into a Postfix Expression

• (A + B) * C

(AB+)*C

AB+C*

PNC CS

• (A–B) * (C+D)

[AB-] * [CD+]

AB-CD+*

PNC CS

Evaluation of a Postfix Expression

• Using stacks, any postfix expression can be evaluated
very easily.

• Every character of the postfix expression is scanned
from left to right.

• If the character encountered is an operand, it is
pushed on to the stack.

• However, if an operator is encountered, then the top
two values are popped from the stack and the
operator is applied on these values.

• The result is then pushed on to the stack.

PNC CS

Example

• Consider a+b*c

• Its corresponding postfix notation is abc*+

• Consider a=4, b=5 and c=6

PNC CS

72+

PNC CS

PNC CS

TOWERS OF HANOI
Prepared by

Ms Deepthi M Pisharody
Asst Professor

Prajyoti Niketan College, Pudukad

PNC CS

 The tower of Hanoi is one of the main applications of recursion.

 It says, ‘if you can solve n–1 cases, then you can easily solve the
nth case’.

PNC CS

 three rings mounted on pole A.

 The problem is to move all these rings from pole A to pole C while
maintaining the same order.

 The main issue is that the smaller disk must always come above the larger
disk.

PNC CS

PNC CS

PNC CS

 We will be doing this using a spare pole. In our case, A is the source pole, C
is the destination pole, and B is the spare pole.

 To transfer all the three rings from A to C, we will first shift the upper two
rings (n–1 rings) from the source pole to the spare pole.

 We move the first two rings from pole A to B.

 Now that n–1 rings have been removed from pole A, the nth ring can be
easily moved from the source pole (A) to the destination pole (C).

 The final step is to move the n–1 rings from the spare pole (B) to the
destination pole (C).

PNC CS

 Base case: if n=1

 Move the ring from A to C using B as spare

 Recursive case:

 Move n – 1 rings from A to B using C as spare

 Move the one ring left on A to C using B as spare

 Move n – 1 rings from B to C using A as spare

PNC CS

PNC CS

PNC CS

#include <stdio.h>

int main()

{

int n;

printf("\n Enter the number of rings: ");

scanf("%d", &n);

move(n,'A', 'C', 'B');

return 0;

}

PNC CS

void move(int n, char source, char dest, char spare)

{

if (n==1)

printf("\n Move from %c to %c",source,dest);

else

{

move(n–1,source,spare,dest);

move(1,source,dest,spare);

move(n–1,spare,dest,source);

}

}

PNC CS

PNC CS

QUEUES IN DATA STRUCTURES
Prepared by

Deepthi M Pisharody

Asst Professor

Dept of Computer Science

Prajyoti Niketan College, Pudukad

References
Seymour Lipschutz, “Data Structures”, Tata McGraw- Hill
Publishing Company Limited, Schaum‟s Outlines
YedidyanLangsam, Moshe J. Augenstein, and Aaron M.
Tenenbaum, “Data Structures Using C”, Pearson Education.,
New Delhi.
Data Structures Using C, Reema Thareja

PNC CS

Real life applications

•People moving on an escalator.

•People waiting for a bus.

•People standing outside the
ticketing window of a cinema
hall.

•Luggage kept on conveyor
belts.

•Cars lined at a toll bridge.

The

element at

the first

position is

served

first

Queue datastructure 2

PNC CS

Queue Data structure

•A queue is a FIFO (First-In, First-Out) data
structure in which the element that is inserted
first is the first one to be taken out.

•The elements in a queue are added at one end
called the REAR

•Removed from the other end called the FRONT.

•Queues can be implemented by using either
arrays or linked lists. Queue datastructure 3

PNC CS

ARRAY REPRESENTATION OF QUEUES

•Queues can be easily represented using linear
arrays.

•every queue has front and rear variables
that point to the position from where deletions
and insertions can be done, respectively.

Queue datastructure 4

PNC CS

Operations on Queues
•Every time a new element has to be added, REAR
would be incremented by 1 and the value would be
stored at the position pointed by REAR.

•If we want to delete an element from the queue, then
the value of FRONT will be incremented

Queue datastructure 5

PNC CS

Algorithm to insert an element in a queue

Queue datastructure 6

PNC CS

Algorithm to delete an element from a queue

Queue datastructure 7

PNC CS

LINKED REPRESENTATION OF QUEUES

• In a linked queue, every element has two parts, one that stores the data and
another that stores the address of the next element.

• The START pointer of the linked list is used as FRONT.

• We will also use another pointer called REAR, which will store the address of
the last element in the queue.

• All insertions will be done at the rear end and all the deletions will be done at
the front end.

• If FRONT = REAR = NULL, then it indicates that the queue is empty.

Queue datastructure 8

PNC CS

Operations on Linked Queues

• The insert operation adds an element to the end of the queue, and the delete operation removes
an element from the front or the start of the queue.

Queue datastructure 9

PNC CS

Insert Operation

Queue datastructure 10

PNC CS

Algorithm to insert an element in a linked queue

Queue datastructure 11

PNC CS

Structure and pointers

struct node

{

int data;

struct node *next;

};

struct node *front;

struct node *rear;

Queue datastructure 12

PNC CS

void insert()

{

struct node *ptr;

int item;

ptr = (struct node *) malloc (sizeof(struct node));

if(ptr == NULL)

{

printf("\nQUEUE OVERFLOW\n");

return;

}

Queue datastructure 13

PNC CS

else

{

printf("\nEnter a value to be inserted\n");

scanf("%d",&item);

ptr -> data = item;

if(front == NULL)

{

front = ptr;

rear = ptr;

front -> next = NULL;

rear -> next = NULL;

}

Queue datastructure 14

else

{

rear -> next = ptr;

rear = ptr;

rear->next = NULL;

}

}

}

PNC CS

Delete Operation

Queue datastructure 15

PNC CS

Algorithm to delete an element from a linked
queue

Queue datastructure 16

PNC CS

void delete ()

{

struct node *ptr;

if(front == NULL)

{

printf("\nQUEUE UNDERFLOW\n");

return;

}

else

{

ptr = front;

front = front -> next;

free(ptr);

}

} Queue datastructure 17

PNC CS

void display()

{

struct node *ptr;

ptr = front;

if(front == NULL)

{

printf("\nEmpty queue\n");

}

Queue datastructure 18

else

{ printf("\nprinting values\n");

while(ptr != NULL)

{

printf("\n%d\n",ptr -> data);

ptr = ptr -> next;

}

}

}

PNC CS

TYPES OF QUEUES

•Circular Queue

•Deque

• Priority Queue

•Multiple Queue

Queue datastructure 19

PNC CS

Circular Queues

Queue datastructure 20

PNC CS

Inserting an element in a circular queue

•If front = 0 and rear = MAX – 1, then the circular
queue is full.

• If rear != MAX – 1, then rear will be incremented
and the value will be inserted

•If front != 0 and rear = MAX – 1, then it means
that the queue is not full. So, set rear = 0 and insert
the new element there

Queue datastructure 21

PNC CS

Algorithm to insert an element in a circular
queue

Queue datastructure 22

PNC CS

Deletion from a circular queue

Queue datastructure 23

PNC CS

Deletion of an element from circular
queue

•If front = –1, then there are no elements in the queue. So,
an underflow condition will be reported.

• If the queue is not empty and front = rear, then after
deleting the element at the front the queue becomes empty
and so front and rear are set to –1

• If the queue is not empty and front = MAX–1, then after
deleting the element at the front, front is set to 0

Queue datastructure 24

PNC CS

Algorithm to delete an element from a circular
queue

Queue datastructure 25

PNC CS

Deques
• A deque (pronounced as ‘deck’ or ‘dequeue’) is a list in which the

elements can be inserted or deleted at either end.

• It is also known as a head-tail linked list because elements can be added
to or removed from either the front (head) or the back (tail) end.

• No element can be added and deleted from the middle.

• In the computer’s memory, a deque is implemented using either a circular
array or a circular doubly linked list.

• In a deque, two pointers are maintained, LEFT and RIGHT, which point to
either end of the deque.

• The elements in a deque extend from the LEFT end to the RIGHT end
and since it is circular, Dequeue[N–1] is followed by Dequeue[0].

Queue datastructure 26

PNC CS

Two variants of a double-ended queue.

•Input restricted deque In this dequeue, insertions
can be done only at one of the ends, while
deletions can be done from both ends.

• Output restricted deque In this dequeue, deletions
can be done only at one of the ends, while
insertions can be done on both ends.

Queue datastructure 27

PNC CS

Queue datastructure 28

PNC CS

Priority Queues

• A priority queue is a data structure in which each element is assigned a
priority.

• The priority of the element will be used to determine the order in which the
elements will be processed.

• The general rules of processing the elements of a priority queue are

• An element with higher priority is processed before an element with a
lower priority.

• Two elements with the same priority are processed on a first-come-first-

served (FCFS) basis.

• A priority queue can be thought of as a modified queue in which when an
element has to be removed from the queue, the one with the highest-priority
is retrieved first.

• The priority of the element can be set based on various factors.
Queue datastructure 29

PNC CS

• Priority queues are widely used in operating systems to execute the
highest priority process first.

• The priority of the process may be set based on the CPU time it
requires to get executed completely.

• For example, if there are three processes, where the first process needs
5 ns to complete, the second process needs 4 ns, and the third process
needs 7 ns, then the second process will have the highest priority and
will thus be the first to be executed.

• However, CPU time is not the only factor that determines the priority,
rather it is just one among several factors.

Queue datastructure 30

PNC CS

•Another factor is the importance of one process
over another.

•In case we have to run two processes at the same
time, where one process is concerned with online
order booking and the second with printing of
stock details, then obviously the online booking is
more important and must be executed first.

Queue datastructure 31

PNC CS

Implementation of a Priority Queue

•Linked Representation of a Priority Queue

•Array Representation of a Priority Queue

Queue datastructure 32

PNC CS

Linked Representation of a Priority
Queue

• When a priority queue is implemented using a linked list, then
every node of the list will have three parts:

• (a) the information or data part, (b) the priority number of the
element, and (c) the address of the next element.

• If we are using a sorted linked list, then the element with the
higher priority will precede the element with the lower priority.

Queue datastructure 33

PNC CS

Queue datastructure 34

PNC CS

Array Representation of a Priority Queue

•When arrays are used to implement a priority queue, then a
separate queue for each priority number is maintained.

• Each of these queues will be implemented using circular
arrays or circular queues.

•Every individual queue will have its own FRONT and REAR
pointers.

•We use a two-dimensional array for this purpose where each
queue will be allocated the same amount of space.

Queue datastructure 35

PNC CS

Queue datastructure 36

PNC CS

Queue datastructure 37

Thank You

PNC CS

Algorithms
PREPARED BY

DEEPTHI M PISHARODY

ASST PROFESSOR

PRAJYOTI NIKETAN COLLEGE, PUDUKAD

PNC CS

ALGORITHMS

 The typical definition of algorithm is ‘a formally defined procedure for

performing some calculation’.

 If a procedure is formally defined, then it can be implemented using a

formal language, and such a language is known as a programming

language.

 In general terms, an algorithm provides a blueprint to write a program to

solve a particular problem.

 It is considered to be an effective procedure for solving a problem in finite

number of steps.

 That is, a well-defined algorithm always provides an answer and is

guaranteed to terminate.

2

PNC CS

 Algorithms are mainly used to achieve software reuse.

 Once we have an idea or a blueprint of a solution, we can

implement it in any high-level language like C, C++, or Java.

 An algorithm is basically a set of instructions that solve a

problem.

 It is not uncommon to have multiple algorithms to tackle the

same problem, but the choice of a particular algorithm must

depend on the time and space complexity of the algorithm.

3

PNC CS

DIFFERENT APPROACHES TO DESIGNING AN ALGORITHM

 Algorithms are used to manipulate the data contained in data structures. When

working with data structures, algorithms are used to perform operations on the

stored data.

 A complex algorithm is often divided into smaller units called modules.

 This process of dividing an algorithm into modules is called modularization.

 The key advantages of modularization are as follows:

 It makes the complex algorithm simpler to design and implement.

 Each module can be designed independently.

 While designing one module, the details of other modules can be ignored,

thereby enhancing clarity in design which in turn simplifies implementation,

debugging, testing, documenting, and maintenance of the overall algorithm.

4

PNC CS

 There are two main approaches to design an algorithm—

top-down approach and bottom-up approach,

5

PNC CS

Top-down approach

 A top-down design approach starts by dividing the complex algorithm into one or

more modules.

 These modules can further be decomposed into one or more sub-modules, and

this process of decomposition is iterated until the desired level of module

complexity is achieved.

 Top-down design method is a form of stepwise refinement where we begin with

the topmost module and incrementally add modules that it calls.

 Therefore, in a top-down approach, we start from an abstract design and then at

each step, this design is refined into more concrete levels until a level is reached

that requires no further refinement.

6

PNC CS

Bottom-up approach
 A bottom-up approach is just the reverse of top-down approach.

 In the bottom-up design, we start with designing the most basic or concrete

modules and then proceed towards designing higher level modules.

 The higher level modules are implemented by using the operations performed

by lower level modules.

 Thus, in this approach sub-modules are grouped together to form a higher

level module.

 All the higher level modules are clubbed together to form even higher level

modules.

 This process is repeated until the design of the complete algorithm is

obtained.

7

PNC CS

Top-down vs bottom-up approach

 While top-down approach follows a stepwise refinement by decomposing the algorithm into

manageable modules, the bottom-up approach on the other hand defines a module and then

groups together several modules to form a new higher level module.

 Top-down approach is highly appreciated for ease in documenting the modules, generation of

test cases, implementation of code, and debugging. However, it is also criticized because the

sub-modules are analysed in isolation without concentrating on their communication with other

modules or on reusability of components and little attention is paid to data, thereby ignoring the

concept of information hiding.

 Although the bottom-up approach allows information hiding as it first identifies what has to be

encapsulated within a module and then provides an abstract interface to define the module’s

boundaries as seen from the clients. But all this is difficult to be done in a strict bottom-up

strategy.

 Some top-down activities need to be performed for this. All in all, design of complex algorithms

must not be constrained to proceed according to a fixed pattern but should be a blend of top-

down and bottom-up approaches.

8

PNC CS

CONTROL STRUCTURES USED IN ALGORITHMS

 Sequence

 By sequence, we mean that each step of an algorithm is executed in a

specified order. Let us write an algorithm to add two numbers.

 Decision

 Decision statements are used when the execution of a process depends on

the outcome of some condition. For example, if x = y, then print EQUAL.

So the general form of IF construct can be given as:

 IF condition Then process

 A condition in this context is any statement that may evaluate to either a

true value or a false value.

9

PNC CS

 Repetition

 Repetition, which involves executing one or more steps for

a number of times, can be implemented using constructs

such as while, do–while, and for loops. These loops

execute one or more steps until some condition is true.

10

PNC CS

Thank you

11

PNC CS

TIME AND SPACE COMPLEXITY

PREPARED BY

DEEPTHI M PISHARODY

ASST PROFESSOR

PRAJYOTI NIKETAN COLLEGE, PUDUKAD

PNC CS

• Analysing an algorithm means determining the amount

of resources (such as time and memory) needed to

execute it.

• Algorithms are generally designed to work with an

arbitrary number of inputs, so the efficiency or

complexity of an algorithm is stated in terms of time

and space complexity.

complexity

2

PNC CS

• The time complexity of an algorithm is basically the

running time of a program as a function of the input

size. The number of machine instructions which a program executes is

called its time complexity.

• Similarly, the space complexity of an algorithm is the

amount of computer memory that is required during the

program execution as a function of the input size.

complexity

3

PNC CS

• The space needed by a program depends on the following two parts:

• Fixed part: It varies from problem to problem. It includes the space needed

for storing instructions, constants, variables, and structured variables (like

arrays and structures).

• Variable part: It varies from program to program. It includes the space

needed for recursion stack, and for structured variables that are allocated

space dynamically during the runtime of a program.

complexity

4

PNC CS

WORST-CASE, AVERAGE-CASE, BEST-CASE, AND AMORTIZED TIME COMPLEXITY

• Worst-case running time This denotes the behaviour of an algorithm with

respect to the worstpossible case of the input instance. The worst-case running

time of an algorithm is an upper bound on the running time for any input.

Therefore, having the knowledge of worst-case running time gives us an

assurance that the algorithm will never go beyond this time limit.

• Average-case running time The average-case running time of an algorithm is

an estimate of the running time for an ‘average’ input. It specifies the expected

behaviour of the algorithm when the input is randomly drawn from a given

distribution. Average-case running time assumes that all inputs of a given size

are equally likely.

complexity

5

PNC CS

• Best-case running time The term ‘best-case performance’ is used to analyse an algorithm

under optimal conditions. For example, the best case for a simple linear search on an array

occurs when the desired element is the first in the list. However, while developing and

choosing an algorithm to solve a problem, we hardly base our decision on the best-case

performance. It is always recommended to improve the average performance and the worst-

case performance of an algorithm.

• Amortized running time Amortized running time refers to the time required to perform a

sequence of (related) operations averaged over all the operations performed. Amortized

analysis guarantees the average performance of each operation in the worst case.

complexity
PNC CS

TIME–SPACE TRADE-OFF

• The best algorithm to solve a particular problem at hand is no doubt the one that

requires less memory space and takes less time to complete its execution.

• But practically, designing such an ideal algorithm is not a trivial task.

• There can be more than one algorithm to solve a particular problem.

• One may require less memory space, while the other may require less CPU time to

execute. Thus, it is not uncommon to sacrifice one thing for the other. Hence, there

exists a time–space trade-off among algorithms.

complexity

7

PNC CS

• So, if space is a big constraint, then one might choose a

program that takes less space at the cost of more CPU

time. On the contrary, if time is a major constraint, then

one might choose a program that takes minimum time

to execute at the cost of more space.

complexity

8

PNC CS

EXPRESSING TIME AND SPACE COMPLEXITY

• The time and space complexity can be expressed using a function f(n) where n is the input size

for a given instance of the problem being solved.

• Expressing the complexity is required when

• We want to predict the rate of growth of complexity as the input size of the problem increases.

• There are multiple algorithms that find a solution to a given problem and we need to find the

algorithm that is most efficient.

• The most widely used notation to express this function f(n) is the Big O notation.

• It provides the upper bound for the complexity.

complexity

9

PNC CS

complexity

10

PNC CS

complexity

11

Thank you

PNC CS

Sorting
P R E P A R E D B Y

D E E P T H I M P I S H A R O D Y

A S S T P R O F E S S O R

P R A J Y O T I N I K E T A N C O L L E G E , P U D U K A D

PNC CS

Sorting

✓Sorting means arranging the elements of an array so that they are placed in some relevant order

which may be either ascending or descending.

➢Internal sorting which deals with sorting the data stored in the computer’s memory

➢External sorting which deals with sorting the data stored in files. External sorting is applied when there is

voluminous data that cannot be stored in the memory.

SORTING 2

PNC CS

INSERTION SORT

✓Insertion sort is a very simple sorting algorithm in which the sorted array (or list) is built one element at a

time.

✓use it for ordering a deck of cards while playing bridge.

✓The main idea behind insertion sort is that it inserts each item into its proper place in the final list.

✓To save memory, most implementations of the insertion sort algorithm work by moving the current data

element past the already sorted values and repeatedly interchanging it with the preceding value until it is in its

correct place.

✓Insertion sort is less efficient as compared to other more advanced algorithms such as quick sort, heap sort,

and merge sort.

SORTING 3

PNC CS

Technique

SORTING 4

PNC CS

➢Initially, A[0] is the only element in the sorted set. In Pass 1, A[1]

will be placed either before or after A[0], so that the array A is

sorted.

➢In Pass 2, A[2] will be placed either before A[0], in between

A[0] and A[1], or after A[1].

➢In Pass 3, A[3] will be placed in its proper place.

➢In Pass N–1, A[N–1] will be placed in its proper place to keep the

array sorted.
SORTING 5

PNC CS

SORTING 6

PNC CS

General Algorithm

SORTING 7

PNC CS

Complexity of Insertion Sort

Best case –O(n)

Worst case-O(𝑛2)

SORTING 8

PNC CS

Advantages of Insertion Sort

✓It is easy to implement and efficient to use on small sets of data.

✓ It can be efficiently implemented on data sets that are already substantially

sorted.

✓It performs better than algorithms like selection sort and bubble sort.

✓ Insertion sort algorithm is simpler than shell sort, with only a small trade-off in

efficiency.

✓It is over twice as fast as the bubble sort and almost 40 per cent faster than the

selection sort.

✓it requires less memory space (only O(1) of additional memory space).

✓ I t is said to be online, as it can sort a list as and when it receives new elements.
SORTING 9

PNC CS

void insertion_sort(int arr[], int n)

{ int i, j, temp;

for(i=1;i<n;i++)

{ temp = arr[i];

j = i-1;

while((temp < arr[j]) && (j>=0))

{

arr[j+1] = arr[j];

j--;

}

arr[j+1] = temp;

}}

SORTING 10

PNC CS

SELECTION SORT

Although selection sort performs worse than insertion sort algorithm,

it is noted for its simplicity and also has performance advantages

Selection sort is generally used for sorting files with very large

objects (records) and small keys.

SORTING 11

PNC CS

SORTING 12

PNC CS

SORTING 13

PNC CS

In the algorithm, during the Kth pass, we need to find the position POS of the

smallest elements from ARR[K], ARR[K+1], ..., ARR[N].

To find the smallest element, we use a variable SMALL to hold the smallest value

in the sub-array ranging

from ARR[K] to ARR[N].

Then, swap ARR[K] with ARR[POS].

This procedure is repeated until all the elements in the array are sorted.

SORTING 14

PNC CS

SORTING 15

PNC CS

Complexity of Selection Sort

O(𝑛2)

SORTING 16

PNC CS

Advantages of Selection Sort

➢It is simple and easy to implement.

➢ It can be used for small data sets.

➢ It is 60 per cent more efficient than bubble sort.

SORTING 17

PNC CS

QUICK SORT

➢Quick sort is a widely used sorting algorithm developed by C. A. R.

➢Hoare that makes O(n log n) comparisons in the average case to sort an array

of n elements.

➢However, in the worst case, it has a quadratic running time given as O(n2).

➢Basically, the quick sort algorithm is faster than other O(n log n) algorithms,

because its efficient implementation can minimize the probability of requiring

quadratic time.

➢Quick sort is also known as partition exchange sort.

SORTING 18

PNC CS

The quick sort algorithm works as follows:

1. Select an element pivot from the array elements.

2. Rearrange the elements in the array in such a way that all elements that are less than the pivot

appear before the pivot and all elements greater than the pivot element come after it (equal

values can go either way). After such a partitioning, the pivot is placed in its final position.

This is called the partition operation.

3. Recursively sort the two sub-arrays thus obtained. (One with sub-list of values smaller than

that of the pivot element and the other having higher value elements.)

SORTING 19

PNC CS

•Performs well on large tables

•At each step goal is to place a particular element in its final position
within the table.

•In doing so, all elements which precede will have smaller keys, while all
that follows have larger values

•This process partition table into two sub tables.

•The above procedure is repeated to each sub table

SORTING 20

PNC CS

• Let k be an array with n elements

•Take two variables i,j with initial values i=1 and j=n-1

•Two keys k[0] and k[i] are compared.

•If k[i]< k[0] then I is incremented by 1.

•The process is repeated

SORTING 21

PNC CS

When k[i]>= k[0] we proceed to compare k[j] and k[0].

If k[j]>k[0] j is decremented by 1.

◦This is repeated until k[j]<= k[0]

SORTING 22

PNC CS

If i<j we exchange k[i] & k[j]

Then keep j fixed and incrementing i continue above method.

When i>=j the desired key k[0] is placed in its final position by exchanging k[0] & k[j]

One pass is over

First sub table lb=0 and =j-1

Second sub table lb=j+1 and ub=n-1

In each sub table perform quick sort

SORTING 23

PNC CS

Thank you

SORTING 24

PNC CS

