
Java Programming
V Semester B. Sc Computer Science

Rincy T A
Assistant Professor

Department of Computer Science
Prajyoti Niketan College, Pudukad

Reference:
The Complete Reference: Java2

By
Herbert Schildt

1

OBJECT ORIENTED PROGRAMMING

• The object-oriented paradigm is a
programming methodology that promotes the
efficient design and development of software
systems using reusable components that can
be quickly and easily assembled into larger
systems.

Java Programming Prajyoti Niketan College, Pudukad2

Aim

• The main aim of object-oriented programming
is to implement real-world concepts like
– Object -> real world entity

– Classes -> blue print

– Abstraction -> Visibility Controls

– Inheritance -> Parent Child Relation

– Polymorphism -> Many forms

Java Programming Prajyoti Niketan College, Pudukad3

Java Programming Prajyoti Niketan College, Pudukad4

Why OOP

• Applications are more manageable and
predictable

• Code Reusability

• Model real things more easily

Java Programming Prajyoti Niketan College, Pudukad5

Principles of OOP

• Class
– A class is a group of objects which have some

common properties. It is a blue print from which
objects are created.

• Object
– An object is an instance of a class. Any entity that

has state and behaviour is known as an object
• Eg: Bench, Per, Car, Table etc..

Java Programming Prajyoti Niketan College, Pudukad6

• Inheritance
– Inheritance is a mechanism in which one object

acquires all the properties and behaviours of a
parent object.

– It is a Parent- Child Relationship (IS-A Relationship)
• Animal is a Mammal, Reptiles or Birds

– Terms Used:
• Sub class/ Child class/Derived class

• Super class/ Parent class/ Base class

Java Programming Prajyoti Niketan College, Pudukad7

• Code Reusability
– We can reuse the existing class fields and methods

when you create a new class.
– Types of Inheritance

• Single : Class Y -> Class X
• Multilevel : Class Z -> Class Y -> Class X
• Hierarchical -> Class Z-> Class X, Class Y -> Class X
• Multiple : Class Y -> Class X, Class Y -> Class Z (not

supported by Java)
• Hybrid

Java Programming Prajyoti Niketan College, Pudukad8

• Polymorphism
– Ability to take more than one form
– If one task is performed by different ways.

• Compile Time Polymorphism
– Overloading

• Run Time Polymorphism
– Overriding

– Eg:
getPrice()

 getPrice(String name)

Java Programming Prajyoti Niketan College, Pudukad9

• Encapsulation
– It is the integration of data and operations into a

class

– Data Hiding
• Eg: A Capsule

– Can you drive a bus?

» Yes, I Can

– So, how does acceleration work?

» Huh?

Java Programming Prajyoti Niketan College, Pudukad10

• Abstraction
– It is giving the access to the functionality of a class

while hiding the implementation details.

Java Programming Prajyoti Niketan College, Pudukad11

Overview

• Java programming language was originally
developed by Sun Microsystems which was
initiated by James Gosling and released in
1995 as core component of Sun Microsystems'
Java platform (Java 1.0 [J2SE]).

• Java is guaranteed to be Write Once, Run
Anywhere.

Java Programming Prajyoti Niketan College, Pudukad12

Java is:

• Object Oriented: In Java, everything is an
Object. Java can be easily extended since it is
based on the Object model.

• Platform Independent: Unlike many other
programming languages including C and C++,
when Java is compiled, it is not compiled into
platform specific machine, rather into
platform independent byte code. This byte
code is distributed over the web and
interpreted by the Virtual Machine (JVM) on
whichever platform it is being run on.

Java Programming Prajyoti Niketan College, Pudukad13

• Simple: Java is designed to be easy to learn. If
you understand the basic concept of OOP
Java, it would be easy to master.

• Secure: With Java's secure feature it enables
to develop virus-free, tamper-free systems.
Authentication techniques are based on
public-key encryption.

Java Programming Prajyoti Niketan College, Pudukad14

• Architecture-neutral: Java compiler generates
an architecture-neutral object file format,
which makes the compiled code executable on
many processors, with the presence of Java
runtime system.

• Portable: Being architecture-neutral and
having no implementation dependent aspects
of the specification makes Java portable.

Java Programming Prajyoti Niketan College, Pudukad15

• Robust: Java makes an effort to eliminate error
prone situations by emphasizing mainly on
compile time error checking and runtime
checking.

• Multithreaded: With Java's multithreaded
feature it is possible to write programs that
can perform many tasks simultaneously. This
design feature allows the developers to
construct interactive applications that can run
smoothly.

Java Programming Prajyoti Niketan College, Pudukad16

• Interpreted: Java byte code is translated on
the fly to native machine instructions and is
not stored anywhere. The development
process is more rapid and analytical since the
linking is an incremental and light-weight
process.

• High Performance: With the use of
Just-In-Time compilers, Java enables high
performance.

Java Programming Prajyoti Niketan College, Pudukad17

• Distributed: Java is designed for the
distributed environment of the internet.

• Dynamic: Java is considered to be more
dynamic than C or C++ since it is designed to
adapt to an evolving environment. Java
programs can carry extensive amount of
run-time information that can be used to
verify and resolve accesses to objects on
run-time.

Java Programming Prajyoti Niketan College, Pudukad18

History of Java

• James Gosling initiated Java language project in June 1991
for use in one of his many settop box projects. The
language, initially called ‘Oak’ after an oak tree that stood
outside Gosling's office, also went by the name ‘Green’ and
ended up later being renamed as Java, from a list of random
words.

• Sun released the first public implementation as Java 1.0 in
1995. It promised Write Once, Run Anywhere (WORA),
providing no-cost run-times on popular platforms.

• On 13 November, 2006, Sun released much of Java as free
and open source software under the terms of the GNU
General Public License (GPL).

• On 8 May, 2007, Sun finished the process, making all of
Java's core code free and opensource, aside from a small
portion of code to which Sun did not hold the copyright.

Java Programming Prajyoti Niketan College, Pudukad19

Try It

 public class MyFirstJavaProgram

 {
public static void main(String []args)

 {

System.out.println("Hello World");

}

}

Java Programming Prajyoti Niketan College, Pudukad20

public class MyFirstJavaProgram
{

/* This is my first java program.
 This will print 'Hello World' as the output */
public static void main(String []args)
{
System.out.println("Hello World");

// prints Hello World
}

}

Java Programming Prajyoti Niketan College, Pudukad21

• Open notepad and add the code as above.
• Save the file as: MyFirstJavaProgram.java.
• Open a command prompt window and go to the

directory where you saved the class. Assume it's C:\.
• Type 'javac MyFirstJavaProgram.java' and press enter

to compile your code. If there are no errors in your
code, the command prompt will take you to the next
line (Assumption : The path variable is set).

• Now, type ' java MyFirstJavaProgram ' to run your
program.

• You will be able to see ' Hello World ' printed on the
window.

Java Programming Prajyoti Niketan College, Pudukad22

C:\> javac MyFirstJavaProgram.java

C:\> java MyFirstJavaProgram

Hello World

Java Programming Prajyoti Niketan College, Pudukad23

About Java programs, it is very important
to keep in mind the following points.

• Case Sensitivity - Java is case sensitive, which
means identifier Hello and hello would have
different meaning in Java.

• Class Names - For all class names the first
letter should be in Upper Case. If several
words are used to form a name of the class,
each inner word's first letter should be in
Upper Case. Example: class MyFirstJavaClass

Java Programming Prajyoti Niketan College, Pudukad24

• Method Names - All method names should
start with a Lower Case letter. If several words
are used to form the name of the method,
then each inner word's first letter should be in
Upper Case. Example: public void
myMethodName()

Java Programming Prajyoti Niketan College, Pudukad25

• Program File Name - Name of the program file
should exactly match the class name. When
saving the file, you should save it using the
class name (Remember Java is case sensitive)
and append '.java' to the end of the name (if
the file name and the class name do not
match, your program will not compile).
Example: Assume 'MyFirstJavaProgram' is the
class name. Then the file should be saved as
'MyFirstJavaProgram.java‘

Java Programming Prajyoti Niketan College, Pudukad26

• public static void main(String args[]) - Java
program processing starts from the main()
method which is a mandatory part of every
Java program.

Java Programming Prajyoti Niketan College, Pudukad27

Primitive Data Types

Java Programming Prajyoti Niketan College, Pudukad28

Integers

• byte

• short

• int

• long

• All these are signed, positive and negative
values.

Java Programming Prajyoti Niketan College, Pudukad29

Java Programming Prajyoti Niketan College, Pudukad30

Example:

byte b,c;

short s;

short t;

int lightspeed;

long days;

long seconds;

Java Programming Prajyoti Niketan College, Pudukad31

Floating-Point Types

• They are known as Real numbers

• Used when evaluating expressions that
require fractional precision

Name Width in bits

double 64

float 32

Example:

double pi,r,a;

Java Programming Prajyoti Niketan College, Pudukad32

Characters

• Java uses Unicode to represent characters.
• char is a 16-bit type
• Range is from 0 to 65536.
Example:

char ch1,ch2;
ch1=88; //code for X
ch2=‘Y’;

Java Programming Prajyoti Niketan College, Pudukad33

Booleans

• Possible values: true or false

Example:

boolean b;

b=false;

Java Programming Prajyoti Niketan College, Pudukad34

Lexical Issues

• Whitespace
– Java is a free-form language

– You do not need to follow any special indentation
rules.

– In Java, whitespace is a space, tab or newline.

Java Programming Prajyoti Niketan College, Pudukad35

• Identifiers
– Used for class names, method names, and variable

names.

– May be any descriptive sequence of letters,
numbers, or the underscore and dollar-sign
characters.

– Must not begin with a number.

Java Programming Prajyoti Niketan College, Pudukad36

• Literals
– A constant value in java is created by using a literal

representation of it.

Example:

100 98.6 ‘X’ “This is test”

Java Programming Prajyoti Niketan College, Pudukad37

• Character Literals
– Character Escape Sequences
Escape Sequence Description
\ddd Octal Character
\uxxxx Heaxadecimal Unicode character
\’ Single Quote
\” Double Quote
\\ Backslash
\r Carriage Return
\n New Line
\t Tab
\b Backspace

Java Programming Prajyoti Niketan College, Pudukad38

• Separators
() Parentheses

{} Braces

[] Brackets

; Semicolon

, Comma

. Period

Java Programming Prajyoti Niketan College, Pudukad39

• Keywords
– There are 49 reserved keywords

– Keywords cannot be used as names for a variable,
class or method.

Example:

break else new short

static class super while

Java Programming Prajyoti Niketan College, Pudukad40

Variables

• Basic unit of storage in a Java Program
• All variables must be declared before they can be

used.
• All variables have scope
• Syntax for variable declaration:

type identifier[= value][, identifier[= value]...];
Example:

int a,b,c;
int d=3,e,f=5;
char x=‘Y’;
double pi=3.14159;

Java Programming Prajyoti Niketan College, Pudukad41

Dynamic Initialization

• Java allows variables to be initialised
dynamically, using any expression valid at the
time the variable is declared.

Java Programming Prajyoti Niketan College, Pudukad42

class Example2
{

public static void main(String []args)
{

int num;
num=100;
System.out.println("This is num: "+num);
num=num*2;
System.out.println("The value of num*2 is "+num);
double a=3.0,b=4.0;
double c=Math.sqrt(a*a + b*b);
System.out.println("Hypotenuse is "+c);

}
}
Output:
This is num: 100
The value of num*2 is 200
Hypotenuse is 5.0

Java Programming Prajyoti Niketan College, Pudukad43

Scope and Lifetime of variables

• A block defines scope.

• Scope determines what objects are visible to
other parts of your program.

• It also determines the lifetime of those objects

• In Java, the two major scopes are those
defined by a class and those defined by a
method.

• Scopes can be nested.

Java Programming Prajyoti Niketan College, Pudukad44

class Example3
{

public static void main(String []args)
{

int num;
num=100;
if(num==100)
{

int y=10;
System.out.println("This is num*y: "+num*y);

}
//y=100; //Error
num=num*2;
System.out.println("The value of num*2 is "+num);

}
}
Output:
This is num*y: 1000
The value of num*2 is 200

Java Programming Prajyoti Niketan College, Pudukad45

Type conversion and casting

• It is fairly common to assign a value of one
type to a variable of another type.

• If the two types are compatible, then Java will
perform the conversion automatically.

• It is possible to assign an int value to a long
variable.

• There is no automatic conversion from double
to byte.

Java Programming Prajyoti Niketan College, Pudukad46

Automatic conversions

• It will take place if the following conditions are
met:
– The two types are compatible

– The destination type is larger than the source type

• If the conditions are met, then a widening
conversion takes place

Java Programming Prajyoti Niketan College, Pudukad47

Casting incompatible types

• Suppose you want to assign an int value to a
byte variable.

• Its a narrowing conversion

• A cast is simply an explicit type conversion

(target-type) value

Note: target-type specifies the desired type to
convert the specified value to.

Java Programming Prajyoti Niketan College, Pudukad48

• The following fragment casts an int to a byte

int a;

byte b;

.....

b=(byte)a;

Java Programming Prajyoti Niketan College, Pudukad49

• When a floating point value is assigned to an
integer type, truncation takes place

• 1.23 is truncated to 1

Java Programming Prajyoti Niketan College, Pudukad50

Automatic type promotion
in expressions

Example:
byte a=40;
byte b=50;
byte c=100;
int d=a*b/c;

 As useful as the automatic promotions are, they can cause
confusing compile-time errors.

byte b=50;
b=b*2; //Error

But
 byte b=50;
b=(byte)(b*2); //Correct

Java Programming Prajyoti Niketan College, Pudukad51

Operators

Java Programming Prajyoti Niketan College, Pudukad52

Arithmetic Operators

+ addition
- Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
+= Addition Assignment,c+=a is equivalent to c=c+a
-= Subtraction Assignment
*= Multiplication Assignment
/= Division Assignment
%= Modulus Assignment
-- Decrement

Java Programming Prajyoti Niketan College, Pudukad53

• Modulus Operator:
Returns the remainder of a division operator

class Modulus
{

public static void main(String args[])
{

int x=42;
double y=42.25;
System.out.println(x%10);
System.out.println(y%10);

}
}

Output:
2
2.25

Java Programming Prajyoti Niketan College, Pudukad54

• Arithmetic assignment operators

Any statement of the form

var=var op expression;

can be rewritten as

var op=expression;

Example:

c += a*b;

is equivalent to

 c= c + a*b;

Java Programming Prajyoti Niketan College, Pudukad55

• Increment and Decrement
x=x+1 is equivalent to x++ (postfix)
x=x-1 is equivalent to x- -

 Example:
x=42;
y=++x; (Prefix) // here y=43

x=42;
y=x++; (postfix) //here y=42

Java Programming Prajyoti Niketan College, Pudukad56

Relational Operators

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Java Programming Prajyoti Niketan College, Pudukad57

Boolean Logical Operators
& Logical AND
| Logical OR
^ Logical EXOR
|| Short-circuit OR
&& Short-circuit AND
! Logical Unary NOT
&= AND Assignment
|= OR Assignment
^= XOR Assignment
== Equal to
!= Not Equal to
?: Ternary if-then-else

Java Programming Prajyoti Niketan College, Pudukad58

• Logical Operators
a=true;
b=false;
a|b=true
a&b=false
a^b=true
!a&b | a&!b=true
!a=false

Java Programming Prajyoti Niketan College, Pudukad59

• Short-circuit logical operators:

In the case of these operators, Java will not
bother to evaluate the right-hand operand
when the outcome of the expression can be
determined by the left-operand alone.

Example:

If(denom !=0 && num/denom>10)

Java Programming Prajyoti Niketan College, Pudukad60

Assignment Operator

= Assignment

Syntax:

var=expression;

Int x,y,z;

x=y=z=100;

Java Programming Prajyoti Niketan College, Pudukad61

The ? operator

• Ternary operator

Syntax:

exp1?exp2:exp3;

exp1 can be any expression that evaluates to
a boolean value.

Ratio= denom==0? 0 : num/denom;

Java Programming Prajyoti Niketan College, Pudukad62

Bitwise Operators
• These operators can be applied to the integer types, long, int,

short, char and byte.
Operators:
~ Bitwise unary NOT
& Bitwise AND
| Bitwise OR
^ Bitwise EXOR
>> Shift right
>>> Shift right zero fill
<< Shift left
&= Bitwise AND assignment
|= Bitwise OR assignment
^= Bitwise EXOR assignment
>>= Shift right assignment
>>>= Shift right zero fill assignment
<<= Shift left assignment

Java Programming Prajyoti Niketan College, Pudukad63

int a=3; //a=0011
int b=6; //b=0110
int c=a | b; //c=0111
int d=a & b; //d=0010
int e=a ^ b; //e=0101
int f=(~a & b) | (a & ~b); //f=0101
int g=~a & 0x0f; //g=1100
int h=64; //h=1000000
int i=h<<2; //i=256
int j=64; //j=1000000
int k=j>>2; //k=16

Java Programming Prajyoti Niketan College, Pudukad64

The precedence of Java Operators
Highest

() [] .

++ -- ~ !

* / %

+ -

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= Op=

Lowest
65

Arrays

• Java provides a data structure, the array,
which stores a fixed-size sequential collection
of elements of the same type.

• An array is used to store a collection of data,
but it is often more useful to think of an array
as a collection of variables of the same type.

Java Programming Prajyoti Niketan College, Pudukad66

• Instead of declaring individual variables, such
as number0, number1, ..., and number99, you
declare one array variable such as numbers
and use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables.

Java Programming Prajyoti Niketan College, Pudukad67

Declaring Array Variables

• Declare a variable to reference the array, and
specify the type of array the variable can
reference.

dataType[] arrayRefVar; // preferred way.

 or

dataType arrayRefVar[];

// works but not preferred way.

Java Programming Prajyoti Niketan College, Pudukad68

• Example:

double[] myFruits;

or

double myFruits[];

Java Programming Prajyoti Niketan College, Pudukad69

Creating Arrays

• You can create an array by using the new
operator with the following syntax:

arrayRefVar = new dataType[arraySize];

• The above statement does two things:
– It creates an array using

new dataType[arraySize];
– It assigns the reference of the newly created array

to the variable arrayRefVar

Java Programming Prajyoti Niketan College, Pudukad70

• Declaring an array variable, creating an array, and
assigning the reference of the array to the variable can
be combined in one statement, as shown below:

dataType[] arrayRefVar = new dataType[arraySize];

• Alternatively you can create arrays as follows:

dataType[] arrayRefVar = {value0, value1, ..., valuek};

The array elements are accessed through the index.
Array indices are 0-based; that is, they start from 0 to
arrayRefVar.length-1.
Java Programming Prajyoti Niketan College, Pudukad71

• Example:
double[] myFruits = new double[10];

int[] month_days=new int[12];
or

int[] month_days;
month_days=new int[12];

month_days[0]=31;
month_days[1]=28;
............

Java Programming Prajyoti Niketan College, Pudukad72

• Initialising an array:
– Example:

int month_days[]={31,28,31,30};

System.out.println(“April has “+month_days[3]+“days”);

Java Programming Prajyoti Niketan College, Pudukad73

class Example2
{

public static void main(String []args)
{

int month_days[]={31,28,31,30};
System.out.println("April has "+month_days[3]+" days");
int sum_of_days=0;
for(int i=0;i<4;i++)

sum_of_days=sum_of_days+month_days[i];

System.out.println("Total days: "+sum_of_days);
}

}
Output:
April has 30 days
Total days: 120

Java Programming Prajyoti Niketan College, Pudukad74

Multidimensional arrays

• Arrays of arrays

• Declaring a two-dimensional array
int twoD[][]=new int[4][5];

Java Programming Prajyoti Niketan College, Pudukad75

Java Programming Prajyoti Niketan College, Pudukad76

class Example5
{

public static void main(String []args)
{

int twoD[][]=new int[4][5];
int i, j,k=0;
for(i=0;i<4;i++)

for(j=0;j<5;j++)
{

twoD[i][j]=k;
k++;

}
for(i=0;i<4;i++)
{

for(j=0;j<5;j++)
{

System.out.print(twoD[i][j]+" ");
}
System.out.println();

}
}

}

Output:
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

Java Programming Prajyoti Niketan College, Pudukad77

• When you allocate memory for a
multidimensional array, you need only specify
the memory for the first dimension.

• Example:
int twoD[][]=new int[4][];
twoD[0]=new int[5];
twoD[1]=new int[5];
twoD[2]=new int[5];
twoD[3]=new int[5];

Java Programming Prajyoti Niketan College, Pudukad78

• We can create arrays with unequal second
dimension.
int twoD[][]=new int[4][];

twoD[0]=new int[1];

twoD[1]=new int[2];

twoD[2]=new int[3];

twoD[3]=new int[4];

0
1 2
3 4 5
6 7 8 9

Java Programming Prajyoti Niketan College, Pudukad79

• Initialisation of multidimensional arrays:

double m[][]={

{0*0, 1*0, 2*0, 3*0},

{0*1, 1*1, 2*1, 3*1},

{0*2, 1*2, 2*2, 3*2},

{0*3, 1*3, 2*3, 3*3}

 };

Java Programming Prajyoti Niketan College, Pudukad80

Reading Console Input

Java Programming Prajyoti Niketan College, Pudukad81

•Console input is accomplished by reading
from System.in

•To obtain a character-based stream that is
attached to the console, you wrap System.in
in a BufferedReader object, to create a
character stream.

•Reader is an abstract class. One of its
concrete subclass is InputStreamReader,
which converts bytes to characters.

Java Programming Prajyoti Niketan College, Pudukad82

•Putting it altogether, the following line of
code creates a BufferedReader that is
connected to the keyboard.

BufferedReader br= new
BufferedReader(new
InputStreamReader(System.in));

After this statement executes, br is a
character-based stream that is linked to the
console through System.in

Java Programming Prajyoti Niketan College, Pudukad83

Reading characters

•The version used for read() is:
int read() throws IOException

Each time that read() is called, it
reads a character from the input
stream and returns as an integer
value. It returns -1 when the end
of the stream is encountered. It
can throw IOException.

Java Programming Prajyoti Niketan College, Pudukad84

Example Program:
import java.io.*;

class BRRead

{

public static void main(String []args) throws IOException

{

char c;

BufferedReader br= new BufferedReader(new
InputStreamReader(System.in));

System.out.println("Enter characters, 'q' to quit.");

do

{

c=(char)br.read();

System.out.print(c);

}while(c!='q');

}

}

C:\>java BRRead
Enter characters, 'q'
to quit.
ghjghq
ghjghq

Java Programming Prajyoti Niketan College, Pudukad85

Reading Strings

•The version used for readLine() is:

String readLine() throws
IOException

It reads a String from the
keyboard, and it returns a String
object.

Java Programming Prajyoti Niketan College, Pudukad86

Example Program:
import java.io.*;

class BRReadLines

{

public static void main(String []args) throws IOException

{

String str;

BufferedReader br= new BufferedReader(new
InputStreamReader(System.in));

System.out.println("Enter Lines of text, ‘stop' to quit.");

do

{

str=br.readLine();

System.out.println(“String is:”+str);

}while(!str.equals(“stop”));

}

}

C:\>java BRReadLines
Enter Lines of text, 'stop'
to quit.
Hello
String is:Hello
How are you?
String is:How are you?
stop
String is:stop

Java Programming Prajyoti Niketan College, Pudukad
87

Reading Integers
import java.io.*;

class ReadInt

{

public static void main(String []args) throws IOException

{

int a;

BufferedReader br= new BufferedReader(new
InputStreamReader(System.in));

System.out.println("Enter numbers, -1 to quit.");

do

{

a=Integer.parseInt(br.readLine());

System.out.println("Value is:"+a);

}while(a!= -1);

}

}

C:\>java ReadInt
Enter numbers, -1 to quit.
3
Value is:3
5
Value is:5
-1
Value is:-1

Java Programming Prajyoti Niketan College, Pudukad88

Class Fundamentals
•Class defines a new data type.

•This new type can be used to create objects of

that type.

•A class is a template for an object, and an

object is an instance of a class.

•It defines the shape and nature of an object.

Java Programming Prajyoti Niketan College, Pudukad89

The General Form of a Class
class classname{

type instance-variable1;

type instance-variable2;

.

.

type instance-variableN;

type methodname1(parameter-list){

//body of method

}

type methodname2(parameter-list){

//body of method

}

.

.

}

}

Java Programming Prajyoti Niketan College, Pudukad90

•A class contains data(instance variables) and the

code that operate on the data(methods).

•A class code defines the interface to its data.

•Each instance of the class contains its own copy of

the data variables.

Java Programming Prajyoti Niketan College, Pudukad91

A simple Class

class Box{

double width;

double height;

double depth;

}

To create an object of this class, use the statement

Box mybox=new Box();

Box yourbox=new Box();

Java Programming Prajyoti Niketan College, Pudukad92

A simple Class
class Box{

double width;

double height;

double depth;

}

•Each object of this class contain its own copies of the

instance variables defined by the class.

•To access these variables use the dot(.) operator.

mybox.width=100;

mybox.height=50;

mybox.depth=20;

yourbox.width=80;

Java Programming Prajyoti Niketan College, Pudukad93

An Example Program
class Box

{

double width;

double height;

double depth;

}

class BoxDemo

{

public static void main(String args[])

{

Box mybox=new Box();

double vol=0;

mybox.width=100;

mybox.height=50;

mybox.depth=20;

vol= mybox.width*mybox.height*mybox.depth;

System.out.println(“Volume is “ + vol);

}

}

Java Programming Prajyoti Niketan College, Pudukad94

An Example Program

class Box
{

double width;
double height;
double depth;

}
class BoxDemo
{

public static void main(String args[])
{

Box mybox1=new Box();
Box mybox2=new Box();
double vol=0;

Java Programming Prajyoti Niketan College, Pudukad95

mybox1.width=10;

mybox1.height=20;

mybox1.depth=15;

mybox2.width=3;

mybox2.height=6;

mybox2.depth=9;

vol=mybox1.width*mybox1.height*mybox1.depth;

System.out.println(“Volume is “ + vol);

vol=mybox2.width*mybox2.height*mybox2.depth;

System.out.println(“Volume is “ + vol);

}

}

Java Programming Prajyoti Niketan College, Pudukad96

Declaring objects

Obtaining objects of a class is a two step process.

First, declare a variable of the class type.

Second, acquire an actual, physical copy of the
object and assign it to that variable(new operator).

The new operator dynamically allocates memory for an
object and returns a reference to it.

 Box mybox1=new Box();

can be rewritten as

Box mybox1;

mybox1=new Box();

Java Programming Prajyoti Niketan College, Pudukad97

Statement Effect

Box mybox1;

mybox1

mybox1=new Box();

mybox1

Box object

Null

Width

Height

Depth

Java Programming Prajyoti Niketan College, Pudukad98

Assigning object reference
variable

Consider the following fragment of code:

 Box b1=new Box();

 Box b2=b1;

 b1

 b2

 Box object

Width

Height

Depth

Java Programming Prajyoti Niketan College, Pudukad99

Introducing methods

Java Programming Prajyoti Niketan College, Pudukad100

•Methods have so much power and flexibility in Java
•General Form:

type methodname(parameter-list)
{
//body of method
}

• type specifies the type of data returned by the
method.
• If the method does not return a value- void.
•Parameter-list is a sequence of type and identifier

pairs separated by commas.
•No parameters- list is empty.
•Methods return value using the syntax:

return value;

Java Programming Prajyoti Niketan College, Pudukad101

Adding a method to the Box
class

class Box
{

double width;
double height;
double depth;
void volume()
{

System.out.print(“Volume is “);
System.out.println(width*height*dept

h);
}

}

Java Programming Prajyoti Niketan College, Pudukad102

class BoxDemo3
{

public static void main(String args[])
{

Box mybox=new Box();
mybox.width=100;
mybox.height=50;
mybox.depth=20;
mybox.volume();

}
}

Java Programming Prajyoti Niketan College, Pudukad103

Returning a value

• A better way to implement volume() is to have it compute the

volume of the box and return the result to the caller.

class Box
{

double width;
double height;
double depth;
double volume()
{

return width*height*depth;
}

}Java Programming Prajyoti Niketan College, Pudukad104

class BoxDemo4
{

public static void main(String args[])
{

Box mybox=new Box();
double vol=0;
mybox.width=10;
mybox.height=20;
mybox.depth=15;
vol=mybox.volume();
System.out.print(“Volume is “+vol);

}
}

Java Programming Prajyoti Niketan College, Pudukad105

Adding a method that takes parameters

•A parameterized method can operate on a
variety of data.

•Parameterless method:

int square()

{

return 10*10;

}

Java Programming Prajyoti Niketan College, Pudukad106

• A method with one parameter

int square(int i)

{

return i*i;

}

square() is now a general-purpose method that can compute the

square of any integer value.

int x,y;

x=square(5);

x=square(9);

y=2;

x=square(y);

Java Programming Prajyoti Niketan College, Pudukad107

A better approach
class Box
{

double width;
double height;
double depth;
double volume()
{

return width*height*depth;
}
void setDim(double w, double h, double d)
{

width=w;
height=h;
depth=d;

}
}Java Programming Prajyoti Niketan College, Pudukad108

class BoxDemo5
{

public static void main(String args[])
{

Box mybox=new Box();
double vol=0;
mybox.setDim(10,20,15);

 vol=mybox.volume();
System.out.print(“Volume is “+vol);

}
}

Java Programming Prajyoti Niketan College, Pudukad109

Recursion

•Recursion is the process of
defining something in terms of
itself.

• It allows a method to call itself.

•A method that calls itself is said to
be recursive.

Java Programming Prajyoti Niketan College, Pudukad110

Example Program
class Factorial

{

int fact(int n)

{

int result;

if(n==1)

 return 1;

result=fact(n-1)*n;

return result;

}

}

class Example5

{

public static void main(String []args)

{

Factorial f=new Factorial();

System.out.println("Factorial of 3 is: "+f.fact(3));

System.out.println("Factorial of 5 is: "+f.fact(5));

System.out.println("Factorial of 7 is: "+f.fact(7));

}

}

C:\>java Example5
Factorial of 3 is: 6
Factorial of 5 is: 120
Factorial of 7 is: 5040

Java Programming Prajyoti Niketan College, Pudukad
111

•When fact() is called with an
argument of 1, the function returns
1; otherwise it returns the product
of fact(n-1)*n. To evaluate this
expression, fact() is called with n-1.
This process repeats until n equals 1
and the calls to the method begin
returning.
•When a method calls itself, new local
variables and parameters are
allocated storage on the stack, and
method code is executed with these
new variables from start.

Java Programming Prajyoti Niketan College, Pudukad112

Introducing access control
•Encapsulation provides an important
attribute: access control
•You can control what parts of the
program can access the members of
the class. Thus you can prevent the
misuse of data.
• Java’s access specifiers are:

– private
– public
– protected

Java Programming Prajyoti Niketan College, Pudukad113

•public
– When a member of a class is modified

by the public specifier, then that
member can be accessed by any other
code.

•private
– When a member of the class is

specified as private, then that member
can only be accessed by other
members of its class.

•Example:
public int i;
private double j;
private int myMethod(int a, char

b){…..}

Java Programming Prajyoti Niketan College, Pudukad114

 Example program
class Test
{

int a;
public int b;
private int c;
void setc(int

i)
{

c=i;
}
int getc()
{

return c;
}

}

class Example5
{

public static void main(String []args)
{

Test ob=new Test();
ob.a=1;
ob.b=20;
//ob.c=100; //Error
ob.setc(100);
System.out.println("a, b, and c:

"+ob.a+
" "+ob.b+" "+ob.getc());

}
}

C:\>java Example5
a, b, and c: 1 20
100 115

Constructors

•A constructor initializes an object
immediately upon creation.
• It has the same name as the class
in which it resides and is
syntactically similar to a method.
•Once defined, a constructor is
automatically called immediately
after the object is created, before
the new operator completes.
•They have no return type, not
even void.

Java Programming Prajyoti Niketan College, Pudukad116

Example Program
class Box

{

double width;

double height;

double depth;

Box()

{

System.out.println(“Constructing Box”);

width=10;

height=10;

depth=10;

}

double volume()

{

return width*height*depth;

}

}

Java Programming Prajyoti Niketan College, Pudukad117

class BoxDemo
{

public static void main(String []args)
{

Box mybox=new Box();
Box yourbox=new Box();
double vol=0;
vol=mybox.volume();
System.out.println("Volume is "+vol);
vol=yourbox.volume();
System.out.println("Volume is "+vol);

 }

}

Java Programming Prajyoti Niketan College, Pudukad118

Parameterized Constructors

• In the previous example, all boxes
have the same dimension.

•Suppose we want to construct Box
objects with different dimensions.

•The easy solution is to add
parameters to constructors.

Java Programming Prajyoti Niketan College, Pudukad119

Example Program
class Box

{

double width;

double height;

double depth;

Box(double w, double h, double d)

{

width=w;

height=h;

depth=d;

}

double volume()

{

return width*height*depth;

}

}
Java Programming Prajyoti Niketan College, Pudukad120

class BoxDemo
{

public static void main(String []args)
{

Box mybox=new Box(10,20,15);
Box yourbox=new Box(12,14,16);
double vol=0;
vol=mybox.volume();
System.out.println("Volume is "+vol);
vol=yourbox.volume();
System.out.println("Volume is "+vol);

 }

}

Java Programming Prajyoti Niketan College, Pudukad121

This keyword
• this can be used inside any method to refer to the current

object.
• this is always a reference to the object on which the method was

invoked.
• Example:

// a redundant use of this
Box(double w, double h, double d)
{

this.width=w;
this.height=h;
this.depth=d;

}

Java Programming Prajyoti Niketan College, Pudukad122

• Instance variable hiding:

– It is illegal in Java to declare two local variables with
the same name inside the same or enclosing scopes.

– You can have local variables, including formal
parameters to methods, which overlap with the
names of the class instance variables.

– However, when a local variable has the same name
as the instance variable, local variable, hides the
instance variable.

– this lets you to refer directly to the object, you can
use it to resolve any name space collisions that
might occur between instance variables and local
variables.

Java Programming Prajyoti Niketan College, Pudukad123

Box(double width, double height,
double depth)

{

this.width=width;

this.height=height;

this.depth=depth;

}

Java Programming Prajyoti Niketan College, Pudukad124

Using objects as
parameters

Java Programming Prajyoti Niketan College, Pudukad125

•So far we have only been using simple
types as parameters to methods
• It is common to use objects as
parameters
•There are two ways to pass an
argument to a subroutine
•Call-by-value:

– The method copies the value of an
argument into the formal parameter of
the subroutine.

– Therefore the changes made to the
parameter of the subroutine have no
effect on the argument.

– When you pass a simple type to a
method, it is passed by value.

Java Programming Prajyoti Niketan College, Pudukad126

•Call-by-reference
– Changes made to the parameter will

effect the argument used to call the
subroutine.

– When you pass an object to a method,
the situation changes dramatically,
because objects are passed by
reference.

•Example program involves passing
objects as arguments to methods as
well as to constructors.

Java Programming Prajyoti Niketan College, Pudukad127

Example program
class Box

{

double width;

double height;

double depth;

Box()

{

width=10;

height=10;

depth=10;

}

Box(double w, double h, double d)

{

width=w;

height=h;

depth=d;

}
Java Programming Prajyoti Niketan College, Pudukad128

Box(Box ob)

{

width=ob.width;

height=ob.height;

depth=ob.depth;

}

double volume()

{

return width*height*depth;

}

boolean equals(Box o)

{

if(o.width==width && o.height==height &&
o.depth==depth)

return true;

else

return false;

}

}
Java Programming Prajyoti Niketan College, Pudukad129

class Example5

{

public static void main(String []args)

{

Box mybox1=new Box();

Box mybox2=new Box(10,20,15);

Box myclone=new Box(mybox1);

double vol;

vol=mybox1.volume();

System.out.println("Volume of mybox1 is "+vol);

vol=mybox2.volume();

System.out.println("Volume of mybox2 is "+vol);

System.out.println("mybox1==myclone:"+mybox1.equals(mycl
one));

System.out.println("mybox2==myclone:"+mybox2.equals(mycl
one));

}

}

C:\>java Example5
Volume of mybox1 is 1000.0
Volume of mybox2 is 3000.0
mybox1==myclone:true
mybox2==myclone:false

Java Programming Prajyoti Niketan College, Pudukad130

Returning Objects

•A method can return any type of
data, including class types that you
create.
•Example Program:
class Box
{

double width;
double height;
double depth;

Java Programming Prajyoti Niketan College, Pudukad131

Box(double w,double h,double d)
{

width=w;
height=h;
depth=d;

}
Box incrByTen()
{

Box temp=new Box(width+10, height+10,
depth+10);

return temp;
}

}

Java Programming Prajyoti Niketan College, Pudukad132

class Example5
{

public static void main(String []args)
{

Box mybox1=new Box(2,3,4);
Box mybox2;
mybox2=mybox1.incrByTen();
System.out.println("Mybox2 dimensions are:"+

mybox2.width+ ","+
mybox2.height+","+mybox2.depth);

}
}

C:\>java Example5
Mybox2 dimensions
are:12.0,13.0,14.0

Java Programming Prajyoti Niketan College, Pudukad133

Introducing nested and
inner classes

Java Programming Prajyoti Niketan College, Pudukad134

• It is possible to define a class within
another class.
•The scope of a nested class is bounded
by the scope of its enclosing classes.
•Thus class B is defined within class A,
then B is known to A, but not outside of
A.
•A nested class has access to the
members, including private members, of
the class in which it is nested.
•Enclosing class does not have access to
the members of the nested class.
•You can define inner classes within any
block scope(Eg: within the body of the
for loop)

Java Programming Prajyoti Niketan College, Pudukad135

• The most important type of nested class is the inner class.

class Outer

{

int a=42;

void test()

{

Inner inner=new Inner();

inner.display();

}

class Inner

{

int y=10;

void display()

{

System.out.println("Outer-a: " +a);

}

}

void showy()
 {

//System.out.println(y); //Error
}

}
class InnerClassDemo
{

public static void main(String[]
args)

{
Outer outer=new Outer();
outer.test();

}
}

C:\>java InnerClassDemo
Outer-a: 42

Java Programming Prajyoti Niketan College, Pudukad136

Using Command Line
Arguments

•Sometimes you want to pass
information into a program when
you run it.

•A command line argument is the
information that directly follows
the program’s name on the
command line when it is executed.

•They are stored as strings in the
String array passed to main().

Java Programming Prajyoti Niketan College, Pudukad137

class CommandLine

{

public static void main(String args[])

 {

for(int i=0;i<args.length;i++)

System.out.println(“args[“ + i +”]: ” +
args[i]);

}

}
C:\java CommandLine this is a test 100
-1
args[0] : this
args[1] : is
args[2] : a
args[3] : test
args[4] : 100
args[5] : -1 138

import java.io.*;
import java.util.Scanner;
class Demorgan {
int x,y,i,j;
void readNumbers() {
Scanner Sc = new Scanner(System.in);
System.out.println("x : ");
x = Sc.nextInt();
System.out.println("y : ");
y = Sc.nextInt();
System.out.println("i : ");
i = Sc.nextInt();
System.out.println("j : ");
j = Sc.nextInt();
}

void FirstLaw() {
 boolean result;
 result = !(!(x<5) && !(y>=7));
 System.out.println("!(AB) =
"+result);
 result = ((x<5) || (y>=7));
 System.out.println("!A + !B =
"+result);
 }

Java Programming Prajyoti Niketan College, Pudukad139

void SecondLaw() {

 boolean result;

 result = !((i>4) || (j <=6));

 System.out.println("!(A+B) = "+result);

 result = (!(i>4) && !(j <=6));

 System.out.println("!A!B = "+result);

 }

 }

public class Demor {

public static void

main(String[] args) {

Demorgan obj = new

Demorgan();

obj.readNumbers();

obj.FirstLaw();

obj.SecondLaw();

}

}

Java Programming Prajyoti Niketan College, Pudukad140

C:\>java Demor

x :

3

y :

4

i :

5

j :

6

!(AB) = true

!A + !B = true

!(A+B) = false

!A!B = false

Java Programming Prajyoti Niketan College, Pudukad141

Understanding static

Java Programming Prajyoti Niketan College, Pudukad142

•Static data members are used independently
of any object of class.

•When a member is declared static, it can be
accessed before any objects of its class are
created, and without reference to any object.

•Most common example of a static method is
main(). main() is declared as static because it
must be called before any objects exist.

•Static variables are global variables

•All instances of the class share the same
static variable.

Java Programming Prajyoti Niketan College, Pudukad143

•Methods declared as static have several

restrictions:

– They can only call other static methods

– They must only access static data

– They cannot refer to this or super in any way

Java Programming Prajyoti Niketan College, Pudukad144

Example
class Example5
{

static int a=3;
static int b;
static void meth(int x)
{

System.out.println("x=
"+x);

System.out.println("a=
"+a);

System.out.println("b=
"+b);

}

 static
 {

System.out.println("Sta
tic block
initialised ");

b=a*4;
}
public static void

main(String []args)
{

meth(42);}}

Java Programming Prajyoti Niketan College, Pudukad145

•As soon as the class is loaded, all of the static

statements are run. First a is set to 3, then

the static block executes, and finally, b is

initialised to a*4 or 12. The main() is called,

which calls meth(), passing 42 to x.C:\>java Example5
Static block initialised
x= 42
a= 3
b= 12

Java Programming Prajyoti Niketan College, Pudukad146

•Outside the class in which they are defined,
static methods and variables can be used
independently of any object.

•You need only specify the name of their class
followed by the dot operator.

•Syntax:
classname.method()

•classname is the name of the class in which
the static method is declared.

Java Programming Prajyoti Niketan College, Pudukad147

Example programclass StaticDemo
{

static int a=42;
static int b=99;
static void callme()
{ System.out.println("a= "+a);}

}
class Example5{

public static void main(String[] args)
{

StaticDemo.callme();
System.out.println("b =

"+StaticDemo.b);
}

}

C:\>java Example5
a= 42
b = 99

Java Programming Prajyoti Niketan College, Pudukad148

Introducing final
•A variable can be declared as final.
•Doing so prevents its contents from being
modified.
•This means you must initialize a final variable
when it is declared.

final int FILE_NEW=1;
final int FILE_OPEN=2;
final int FILE_SAVE=3;

• final variable is essentially a constant and it is
a common convention to use uppercase
identifiers for final variables

Java Programming Prajyoti Niketan College, Pudukad149

Overloading methods

Java Programming Prajyoti Niketan College, Pudukad150

• In Java, it is possible to define two or more
methods within the same class that share the
same name, as long as their parameter
declarations are different.

• The methods are said to be overloaded, and
the process is referred to as method
overloading.

• It is a way in which Java implements compile
time Polymorphism.

Java Programming Prajyoti Niketan College, Pudukad151

class OverLoadDemo
{

void test()
{

System.out.println("No Parameters");
}
void test(int a)
{

System.out.println("a: "+a);
}
void test(int a, int b)
{

System.out.println("a and b: "+a+" "+b);
}
double test(double a)
{

System.out.println("double a: "+a);
return a*a;

}
}

Example Program

Java Programming Prajyoti Niketan College, Pudukad152

class OLD
{

public static void main(String []args)
{

OverLoadDemo ob=new OverLoadDemo();
double result;
ob.test();
ob.test(10);
ob.test(10,20);
result=ob.test(123.25);
System.out.println("Result is "+result);

 }
}

C:\>java OLD
No Parameters
a: 10
a and b: 10 20
double a: 123.25
Result is
15190.5625 153

• Suppose a class have a the following methods
– void test()
– void test(int a, int b)
– void test(double a)

• Suppose in the main(), we have a statement like
int i=88;
ob.test(i);

• We know that the above program does not define test(int),
therefore no matching method is found.

• However, java can automatically convert an integer into double,
and this conversion can be used to resolve the call.

• And it calls test(double).

Automatic type promotion while
overloading

Java Programming Prajyoti Niketan College, Pudukad154

• When an overloaded method is invoked, Java
uses the type and/or number of arguments as
its guide to determine which version of the
overloaded method to actually call.

• The return type alone is insufficient to
distinguish two versions of a method.

Java Programming Prajyoti Niketan College, Pudukad155

class Box

{

double width;

double height;

double depth;

Box()

{

width=10;

height=10;

depth=10;

}

Box(double w, double h, double d)

{

width=w;

height=h;

depth=d;

}

Box(double len)

{

width=height=depth=len;

}

Overloading Constructors

Java Programming Prajyoti Niketan College, Pudukad156

double volume()
{

return width*height*depth;
}

}
class BoxDemo
{

public static void main(String []args)
{

Box mybox1=new Box();
Box mybox2=new Box(10,20,15);
Box mycube=new Box(7);
double vol;
vol=mybox1.volume();
System.out.println("Volume of mybox1 is "+vol);
vol=mybox2.volume();
System.out.println("Volume of mybox2 is "+vol);
vol=mycube.volume();
System.out.println("Volume of mycube is "+vol);

}
}

C:\>javac
BoxDemo.java

C:\Rincy>java Example5
Volume of mybox1 is
1000.0
Volume of mybox2 is
3000.0
Volume of mycube is
343.0

Java Programming Prajyoti Niketan College, Pudukad157

INHERITANCE

• Inheritance allows the creation of hierarchical
classifications.
•Using inheritance you can create a general
class that defines properties common to a set
of related items.
•A class that is inherited is called a superclass.
•The class that does the inheriting is called a
subclass.
• It inherits all the instance variables and
methods defined by a superclass and adds its
own, unique elements.

Java Programming Prajyoti Niketan College, Pudukad158

Inheritance Basics
•To inherit a class, use
extends keyword

Example:
class A
{

int i,j;
void showij()
{

System.out.println
("i and j: "+i+"
"+j);

}
}

class B extends A
{

int k;
void showk()
{

System.out.println("k:
"+k);

}
void sum()
{

System.out.println("i+j
+k= "+(i+j+k));

}
}

159

class Example5
{

public static void
main(String[] args) {

A superOb=new A();
B subOb=new B();
superOb.i=10;
superOb.j=20;
System.out.println("Conte

nts of superOb:");
superOb.showij();
System.out.println();
subOb.i=7;

subOb.j=8;
subOb.k=9;
System.out.println("Conte

nts of subOb:");
subOb.showij();
subOb.showk();
System.out.println();
System.out.println("Sum

of i, j and k in
subOb:");

subOb.sum();
 }
}

Java Programming Prajyoti Niketan College, Pudukad160

C:\>java Example5
Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k= 24

Java Programming Prajyoti Niketan College, Pudukad161

•Even though A is a super class of B, it is also a
stand alone, completely independent class.

•A subclass can be a super class of another
class.

• Java does not support multiple inheritance.

•A subclass cannot access those members of
the super class that have been declared as
private.

Java Programming Prajyoti Niketan College, Pudukad162

class A

{

int i;

private int j;

void showij()

{

System.out.println("i and j: "+i+" "+j);

}

}

class B extends A

{

int k;

void showijk()

{

System.out.println("i: "+i);

//System.out.println("j: "+j);

System.out.println("k: "+k);

}

}
163

class Example5
{

public static void main(String[] args) {
B subOb=new B();
subOb.i=7;
//subOb.j=8; //Error
subOb.k=9;
System.out.println("Contents of superOb:");
subOb.showij();
System.out.println();
System.out.println("SubOb: ");
subOb.showijk();

}
}

C:\>java Example5
Contents of subOb:
i and j: 7 0

SubOb:
i: 7
k: 9

Java Programming Prajyoti Niketan College, Pudukad164

Example
class Box

{

double width;

double height;

double depth;

double volume()

{

return width*height*depth;

}

}
Java Programming Prajyoti Niketan College, Pudukad165

class BoxWeight extends Box

{

double weight;

BoxWeight(double w,double h,double d, double m)

{

width=w;

height=h;

depth=d;

weight=m;

}

}

class Example5

{

public static void main(String[] args)

{

BoxWeight mybox1=new BoxWeight(10,20,30,40);

BoxWeight mybox2=new BoxWeight(1,2,3,4);

System.out.println("mybox1 volume= "+ mybox1.volume());

System.out.println("mybox2 volume= "+ mybox2.volume());

}

}

C:\>java Example5
mybox1 volume= 6000.0
mybox2 volume= 6.0

Java Programming Prajyoti Niketan College, Pudukad166

A superclass variable can
reference a subclass object

• A reference variable of a superclass can be assigned a
reference to any subclass derived from that superclass.

• It is very useful in a variety of situations.
class Box
{

double width;
double height;
double depth;
Box(){}
double volume()
{

return width*height*depth;
}

}Java Programming Prajyoti Niketan College, Pudukad167

class BoxWeight extends Box
{

double weight;
BoxWeight(double w,double h,double d,

double m)
{

width=w;
height=h;
depth=d;
weight=m;

}
}

Java Programming Prajyoti Niketan College, Pudukad168

class Example5

{

public static void main(String[] args)

{

BoxWeight weightbox=new BoxWeight(10,20,30,40);

Box plainbox=new Box();

double vol;

vol=weightbox.volume();

System.out.println("weightbox volume= "+ vol);

System.out.println("Weight of weightbox is: "+weightbox.weight);

plainbox=weightbox;

vol=plainbox.volume();

System.out.println("plainbox volume= "+ vol);

//System.out.println("Weight of plainbox is: "+plainbox.weight); //invalid
statement

}

}

Java Programming Prajyoti Niketan College, Pudukad169

•When a reference to a subclass object is
assigned to a superclass reference variable,
you will have access only to those parts of
the object defined by the superclass.

•This is why plainbox can’t access weight even
when it refers to a BoxWeight object.

C:\>java Example5
weightbox volume= 6000.0
Weight of weightbox is: 40.0
plainbox volume= 6000.0

Java Programming Prajyoti Niketan College, Pudukad170

Using super

• super has two general forms

•The first calls the superclass constructor

•The second is used to access a member of
the superclass that has been hidden by a
member of a subclass.

Java Programming Prajyoti Niketan College, Pudukad171

Using super to call superclass
constructors

•A subclass can call a constructor method
defined by its superclass by use of the
following form of super:

super(parameter-list);
Here, parameter list specifies any

parameters needed by the constructor in
the superclass.

• super() must always be the first statement
executed inside a suclass’ constructor.

Java Programming Prajyoti Niketan College, Pudukad172

class Box

{

double width;

double height;

double depth;

Box(double w,double h,double d)

{

width=w;

height=h;

depth=d;

}

double volume()

{

return width*height*depth;

}

}

Java Programming Prajyoti Niketan College, Pudukad173

class BoxWeight extends Box

{

double weight;

BoxWeight(double w,double h,double d, double m)

{

super(w,h,d);

weight=m;

}

}

class Example5

{

public static void main(String[] args)

{

BoxWeight weightbox=new BoxWeight(10,20,30,40);

double vol;

vol=weightbox.volume();

System.out.println("weightbox volume= "+ vol);

}

}

C:\>java Example5
weightbox volume= 6000.0

Java Programming Prajyoti Niketan College, Pudukad174

A second use for super
Syntax: super.member

It always refers to the superclass of the
subclass in which it is used.

Here, a member can be either a method or an
instance variable.

This second form of super is most applicable
to situations in which member names of a
subclass hide members by the same name in
the superclass.

Java Programming Prajyoti Niketan College, Pudukad175

class A

{

int i;

}

class B extends A

{

int i;

B(int a, int b)

{

super.i=a;

i=b;

}

void show()

{

System.out.println("i in superclass: "+ super.i);

System.out.println("i in subclass: "+ i);

}

}

class useSuper
{

public static void main(String
args[])

{
B subOb=new B(1,2);
subOb.show();

}
}

C:\>java useSuper
i in superclass: 1
i in subclass: 2

Java Programming Prajyoti Niketan College, Pudukad176

When constructors are called

• In what order are the constructors for the
classes that make up the hierarchy are called?
– In a class hierarchy, constructors are called in order

of derivation, from superclass to subclass
– Since super must be the first statement executed

in a subclass constructor, this order is the same
whether or not super() is used.

– If super() is not used, then the default
parameterless constructor for each superclass will
be executed.

Java Programming Prajyoti Niketan College, Pudukad177

class Test {

 Test()

 {

 System.out.println("Inside Test Constructor");

 }}

class TestSub extends Test{

TestSub()

{

super();

System.out.println("Inside TestSub Constructor");

}}

class TestSubNew extends TestSub{

TestSubNew(){

super();

System.out.println("Inside TestSubNew Constructor");

}}

class Main {

 public static void main(String args[]) {

 TestSubNew t=new TestSubNew();

}}

C:\>java Main
Inside Test Constructor
Inside TestSub Constructor
Inside TestSubNew Constructor

178

Using Abstract Classes

Java Programming Prajyoti Niketan College, Pudukad179

•There are situations in which you will want
to define a superclass that declares the
structure of a given abstraction without
providing a complete implementation of
every method.
•Sometimes you will want to create a
superclass that only defines a generalized
form that will be shared by all of its
subclasses, leaving it to each subclass to fill
in the details.
•To declare an abstract method, use the
general form

abstract type name(parameter-list);

•No method body is present.

Java Programming Prajyoti Niketan College, Pudukad180

•Any class that contains one or more abstract
methods must also be declared abstract.

• To declare a class abstract, you simply use the
abstract keyword in front of the class keyword
at the beginning of the class declaration.

• There can be no objects of an abstract class

• That is, an abstract class cannot be directly
instantiated with the new operator

• You cannot declare abstract constructors, or
abstract static methods

•Any subclass of an abstract class must either
implement all of the abstract methods in the
superclass, or be itself declared abstract.

Java Programming Prajyoti Niketan College, Pudukad181

Example
abstract class A {

abstract void callme();

void callmetoo()

{

System.out.println("This is a concrete method");

}

}

class B extends A{

void callme()

{

System.out.println("B's implementation of callme");

}

}

class Main

{

public static void main(String[] args) {

B b=new B();

b.callme();

b.callmetoo();

}

}

C:\>Java Main
B's implementation of
callme
This is a concrete
method

182

•Although abstract classes cannot be
used to instantiate objects, they can be
used to create object references ,
because java’s approach to run-time
polymorphism is implemented through
the use of the superclass references.

Java Programming Prajyoti Niketan College, Pudukad183

Example:
abstract class Figure{

double dim1;

double dim2;

Figure(double a, double b)

{

dim1=a;

dim2=b;

}

abstract double area();

}

class Rectangle extends Figure{

Rectangle(double a,double b)

{

super(a,b);

}

double area()

{

System.out.println("Inside area of Rectangle");

return dim1*dim2;

}

}
Java Programming Prajyoti Niketan College, Pudukad184

class Triangle extends Figure

{

Triangle(double a,double b)

{

super(a,b);

}

double area()

{

System.out.println("Inside area of Triangle");

return dim1*dim2/2;

}

}

class Main

{

public static void main(String[] args) {

Rectangle r=new Rectangle(9,8);

Triangle t=new Triangle(10,8);

System.out.println("Volume of Rectangle : "+r.area());

System.out.println("Volume of Triangle : "+t.area());

}

}

Inside area of
Rectangle
Volume of Rectangle :
72.0
Inside area of Triangle
Volume of Triangle :
40.0

Java Programming Prajyoti Niketan College, Pudukad185

Using final with Inheritance

•The keyword final has three uses

•First, it can be used to create the
equivalent of a named constant.

•The other two uses of final apply
to inheritance.

Java Programming Prajyoti Niketan College, Pudukad186

Using final to prevent
Inheritance

•To allow a method from being
overriden, specify final as a
modifier at the start of its
declaration.

•Methods declared as final cannot
be overriden.

Java Programming Prajyoti Niketan College, Pudukad187

class A

{

final void meth(){

System.out.println(“This is
final”);

}

}

class B extends A

{

void meth() { // Error

System.out.println(“Illegal”);

}

}

Java Programming Prajyoti Niketan College, Pudukad188

Using final to prevent
Inheritance

•Sometimes you will want to
prevent a class from being
inherited.
•Precede the class declaration with
final
• It implicitly declares all of its
methods to final too.
• It is illegal to declare a class both
as final and abstract.

Java Programming Prajyoti Niketan College, Pudukad189

final class A

{

//………………
}

class B extends A { //Error

//……………..

}

Java Programming Prajyoti Niketan College, Pudukad190

Method Overriding

Java Programming Prajyoti Niketan College, Pudukad191

• In a class hierarchy, when a method
in a subclass has the same name and
type signature as a method in its
superclass, then the method in the
subclass is said to override the
method in the superclass.
•When an overriden method is called
from within a subclass, it will always
refer to the version of that method
defined by the subclass.
•The version of the method defined
by the superclass will be hidden.

Java Programming Prajyoti Niketan College, Pudukad192

class A

{

int i,j;

A(int a, int b)

{

i=a;

j=b;

}

void show()

{

System.out.println("i and j: "+ i +""+j);

}

}

class B extends A

{

int k;

B(int a, int b, int c)
{

super(a,b);
k=c;

}

void show()
{

System.out.println("k: "+
k);

}
}
class useSuper
{
public static void main(String
args[])
{

B subOb=new B(1,2,3);
subOb.show();

}
}

C:\java
useSuper
k: 3

Example: 1

193

class A

{

int i,j;

A(int a, int b)

{

i=a;

j=b;

}

void show()

{

System.out.println("i and j: "+ i +" "+j);

}

}

class B extends A

{

int k;

B(int a, int b, int c)
{

super(a,b);
k=c;

}

void show()
{
super.show();
System.out.println("k: "+

k);
}

}
class useSuper
{
public static void main(String
args[])
{

B subOb=new B(1,2,3);
subOb.show();

}
}

C:\java useSuper
i and j: 1 2
k: 3

Example: 2

194

class A
{

int i,j;
A(int a, int b)
{

i=a;
j=b;

}
void show()
{

System.out.println("i and j: "+ i
+""+j);

}
}

Example: 3(Method overloading)

Java Programming Prajyoti Niketan College, Pudukad195

class B extends A
{

int k;
B(int a, int b, int c)
{
super(a,b);
k=c;
}
void show(String msg)
{
System.out.println("k: "+

k);
}

}

class useSuper
{
public static void
main(String args[])
{
B subOb=new
B(1,2,3);
subOb.show("This is
k");
subOb.show();
}
}

C:\java useSuper
This is k: 3
i and j: 1 2

Java Programming Prajyoti Niketan College, Pudukad196

Dynamic Method Dispatch
• It is the mechanism by which a call
to an overridden method is resolved
at run time, rather than compile
time.

• It’s a method to implement run-time
polymorphism.

•A superclass reference variable can
refer to a subclass object.

• Java uses this fact to resolves calls to
overriden methods at run time.

Java Programming Prajyoti Niketan College, Pudukad197

•When an overriden method is called
through a superclass reference, Java
determines which version of the
method to execute based on the
type of object being referred to at
the time the call occurs.

• It is the type of the object being
referred to that determines which
version of an overriden method will
be executed.

Java Programming Prajyoti Niketan College, Pudukad198

Example Program
class A

{

void callme()

{

System.out.println("Inside A's callme method");

}

}

class B extends A

{

void callme()

{

System.out.println("Inside B's callme method");

}

}

Java Programming Prajyoti Niketan College, Pudukad199

class C extends A

{

void callme()

{

System.out.println("Inside C's callme method");

}

}

class useSuper

{

public static void main(String args[])

{

A a=new A();

B b=new B();

C c=new C();

A r;

r=a;

r.callme();

r=b;

r.callme();

r=c;

r.callme();

}

}

Inside A’s callme
method
Inside B’s callme
method
Inside C’s callme
method

Java Programming Prajyoti Niketan College, Pudukad200

Why overriden methods

•Overriden methods allow Java to
support runtime polymorphism.
• It allows a general class to specify
methods that will be common to
all of its derivatives, while allowing
subclasses to define the specific
implementation of some or all of
those methods.
•Using overriden methods Java
implements “The one interface,
multiple methods” aspect of
polymorphism.

Java Programming Prajyoti Niketan College, Pudukad201

Packages

•Packages are containers for classes
that are used to keep the class name
space compartmentalised.

•For example, a package allows you to
create a class named List, which you
can store in your own package
without concern that it will collide
with some other class named List
stored elsewhere.

Java Programming Prajyoti Niketan College, PudukadJava Programming Prajyoti Niketan College, Pudukad202

•A package is both a naming and visibility
control mechanism.

•You can define classes inside a package
that are not accessible by code outside
that package.

Java Programming Prajyoti Niketan College, Pudukad203

Defining a package

•Simply include a package command as the
first statement in a java source file.

•Any classes declared within that file
belongs to the specified package.

•General form:
package pkg;

Example: package myPackage;

Java Programming Prajyoti Niketan College, Pudukad204

Example: package MyPackage;

the .class files for any classes you
declare to be part of MyPackage must
be stored in a directory called
MyPackage

•More than one file can include the
same package statement.
• You can create a hierarchy of packages.
• Separate each package name from the

one above it by use of a period.
•General form:

package pkg1[.pkg2[.pkg3]];
Example:

package java.awt.image;
Java Programming Prajyoti Niketan College, Pudukad205

Finding packages and
CLASSPATH

•Packages are mirrored by directories.
•1) Java Run-time system uses the current
working directory as its starting point.
Thus if your package is in the current
working directory, or a subdirectory of
the current working directory, it will be
found.
•2) You can specify a directory path or
paths by setting the CLASSPATH
environmental variable.

Java Programming Prajyoti Niketan College, Pudukad206

Example
package MyPack;

class useSuper1

{

static int noOfObjects = 0;

 useSuper1()

 {

 noOfObjects += 1;

 }

}

class useSuper

{

public static void main(String args[])

 {

 useSuper1 t1 = new useSuper1();

 useSuper1 t2 = new useSuper1();

 useSuper1 t3 = new useSuper1();

 System.out.println(useSuper1.noOfObjects);

 }

}

C:\Programs>cd MyPack

C:\Programs\MyPack>javac
useSuper.java

C:\Programs\MyPack>cd..

C:\Programs>java
MyPack.useSuper
3

Java Programming Prajyoti Niketan College, Pudukad207

Access Protection
•Classes and packages are both
means of encapsulating and
containing the name space and
scope of variables and methods.
•Because of the interplay between
classes and packages, Java
addresses four categories of
visibility for class members:
– Subclasses in the same package
– Non-subclasses in the same package
– Subclasses in different packages
– Classes that are neither in the same

package nor subclasses
208

Private No
Modifier

Protected Public

Same Class Yes Yes Yes Yes

Same Package
Subclass

No Yes Yes Yes

Same Package
Non-Subclass

No Yes Yes Yes

Different
Package
Subclass

No No Yes Yes

Different
Package
Non-Subclass

No No No Yes

Class Member Access

Java Programming Prajyoti Niketan College, Pudukad209

package p1;

public class Protection{

int n=1;

private int n_pri=2;

protected int n_pro=3;

public int n_pub=4;

public Protection()

{

System.out.println("base constructor");

System.out.println("n= "+n);

System.out.println("n_pri= "+n_pri);

System.out.println("n_pro= "+n_pro);

System.out.println("n_pub= "+n_pub);

}

}

Protection.java

Java Programming Prajyoti Niketan College, Pudukad210

package p1;
class Derived extends Protection
{

Derived()
{

System.out.println("Derived
constructor");

System.out.println("n= "+n);
//System.out.println("n_pri=

"+n_pri);
System.out.println("n_pro= "+n_pro);
System.out.println("n_pub=

"+n_pub);
}

}

Derived.java

Java Programming Prajyoti Niketan College, Pudukad211

package p1;
class SamePackage
{

SamePackage()
{
Protection p=new Protection();
System.out.println("same package

constructor");
System.out.println("n= "+p.n);
//System.out.println("n_pri= "+p.n_pri);
System.out.println("n_pro= "+p.n_pro);
System.out.println("n_pub= "+p.n_pub);
}

}

SamePackage.java

Java Programming Prajyoti Niketan College, Pudukad212

package p2;

class Protection2 extends p1.Protection{

Protection2()

{

System.out.println("Derived other
Package Constructor");

//System.out.println("n= "+n);

//System.out.println("n_pri=
"+n_pri);

System.out.println("n_pro= "+n_pro);

System.out.println("n_pub=
"+n_pub);

}

}

Protection2.java

Java Programming Prajyoti Niketan College, Pudukad213

package p2;
class OtherPackage
{

OtherPackage()
{

p1.Protection p=new p1.Protection();
System.out.println("Other Package

Constructor");
//System.out.println("n= "+p.n);
//System.out.println("n_pri= "+p.n_pri);
//System.out.println("n_pro= "+p.n_pro);
System.out.println("n_pub= "+p.n_pub);

}
}

OtherPackage.java

Java Programming Prajyoti Niketan College, PudukadJava Programming Prajyoti Niketan College, Pudukad214

Importing Packages

Java Programming Prajyoti Niketan College, Pudukad215

•All of the built-in classes are stored in
packages
• Java includes the import statement to
bring certain classes, or entire packages,
into visibility.
•Once imported, a class can be referred to
directly, using only its name.
• Import statements occur immediately
following the package statement and
before any class definition.
•General form:

import pkg1[.pkg2].(classname|*);

Java Programming Prajyoti Niketan College, Pudukad216

•Here, pkg1 is the name of the top-level
package, and pkg2 is the name of the
subordinate package inside the outer
package separated by a dot(.)
•Finally you specify either an explicit
classname or a star(*)
•Example:

import java.util.*;
import java.io.*;

• All the java classes included with java are
stored in a package called java
•The basic language functions are stored in
a package inside of java package java.lang
• It is implicitly imported by the compiler

Java Programming Prajyoti Niketan College, Pudukad217

•Any place you use a class name, you can
use its fully qualified name, which includes
its full package hierarchy.
•Example:

import java.util.*;
class MyDate extends Date
{
}

OR
class MyDate extends java.util.Date
{}

Java Programming Prajyoti Niketan College, Pudukad218

Example: Figure.java

package p1;

public class Figure{

double dim1;

double dim2;

public Figure(double a, double b)

{

dim1=a;

dim2=b;

}

public void show(){

System.out.println(dim1+" "+dim2);

}

}

Java Programming Prajyoti Niketan College, Pudukad219

Test.java

import p1.*;

class Test

{

public static void main(String[] args) {

Figure tst=new Figure(1,2);

tst.show();

}

}

Java Programming Prajyoti Niketan College, Pudukad220

Interfaces

•Using the keyword interface, you can fully
abstract a class’ interface from its
implementation.
• That is, using interface, you can specify what a

class must do, but not how it does it.
• Intefaces are syntactically similar to classes,

but they lack instance variables, and their
methods are declared without any body.
•Once it is defined, any number of classes can

implement an interface.
•Also one class can implement any number of

interfaces.
Java Programming Prajyoti Niketan College, Pudukad221

•To implement an interface, a class must
create the complete set of methods
defined by the interface.

•Each class is free to determine the details
of its own implementation

•By this method, Java allows you to
determine the “One interface, Multiple
methods” aspect of polymorphism.

Java Programming Prajyoti Niketan College, Pudukad222

Defining Interface

access interface name
{
return_type method_name1(parameter_list);
return_type method_name2(parameter_list);
type final-varname1=value;
type final-varname2=value;
//….
}

Java Programming Prajyoti Niketan College, Pudukad223

•Here, access is either public or not used
•When, no access specifier is included, then
default access results, and the interface is
only available to other members of the
package in which it is declared.
•When it is declared as public, it can be
used by any other code.
•Example:

interface Callback
{
void call(int param);
}

Java Programming Prajyoti Niketan College, Pudukad224

Implementing Interfaces
•Once an interface has been defined, one
or more classes can implement that
interface.
•To implement an interface, include the
implements clause in a class definition,
and then create the methods defined by
the interface.
•The general form of a class that includes
the implements clause looks like this:

access class classname [extends superclass]
[implements interface[,interface …]]{

//class body
}

Java Programming Prajyoti Niketan College, Pudukad225

• Here, access is either public or not used.

• The methods that implement an interface must be declared public.

• Type signature of the implementing method must match exactly the type
signature specified in the interface definition.

class Client implements Callback

{

public void call(int p)

{

System.out.println(“Callback with” + p);

}

void non_ifaceMeth()

{

System.out.println(“Can define other members”);

}

}

Java Programming Prajyoti Niketan College, Pudukad226

Accessing Implementations through
Interface References

•You can declare variables as object references
that use an interface rather than a class type.
•Any instance of any class that implements the
declared interface can be referred to by such a
variable.
•When you call a method through one of these
references, the correct version will be called
based on the actual instance of the interface
being referred to.

Java Programming Prajyoti Niketan College, Pudukad227

Example

class TestIFace

{

public static void main(String args[])

{

Callback c=new Client();

c.call(42);

}

}

Java Programming Prajyoti Niketan College, Pudukad228

Partial Implementations

• If a class includes an interface but does not
fully implement the methods defined by that
interface, then that class must be declared as
abstract.
• Example:

abstract class Incomplete implements Callback
{
int a, b;
void show(){

System.out.println(a+ “ “ +b);
}
//....
}

Java Programming Prajyoti Niketan College, Pudukad229

Variables in Interfaces
import java.util.Random;

interface SC{

int No=0;

int Yes=1;

}

class MCQ implements SC{

Random rand=new Random();

int ask()

{

int prob=(int) (100*rand.nextDouble());

if(prob<30)

return No;

else

return Yes;

}

}

Java Programming Prajyoti Niketan College, Pudukad230

class Test implements SC{

static void answer(int result)

{

switch(result)

{

case No:

System.out.println("No");

case Yes:

System.out.println("Yes");

}

}

public static void main(String[] args) {

MCQ tst=new MCQ();

answer(tst.ask());

answer(tst.ask());

answer(tst.ask());

answer(tst.ask());

}

}

C:\>java Test
Yes
Yes
No
Yes
No
Yes

Java Programming Prajyoti Niketan College, Pudukad231

Interfaces can be extended

• One interface can inherit another by use of the keyword
extends.

• When a class implements as interface that inherits another
interface, it must provide implementations for all methods
defined within the interface inheritance chain.

interface A{
void meth1();
void meth2();
}
interface B extends A
{
void meth3();
}
//.......

Java Programming Prajyoti Niketan College, Pudukad232

Exception Handling

Java Programming Prajyoti Niketan College, Pudukad233

•An exception is an abnormal condition
that arises in a code sequence at run
time.
• It is a run time error.
•A java exception is an object that
describes an exceptional condition that
has occurred in a piece of code.
•When an exceptional condition arises,
an object representing that exception is
created and thrown in the method that
caused the error.
•The method may choose to handle the
exception itself, or pass it on.
•At some point, the exception is caught
and processed.

Java Programming Prajyoti Niketan College, Pudukad234

•Exceptions

•Generated by the Java Runtime System

•Manually generated by your code

Java Programming Prajyoti Niketan College, Pudukad235

Java Exception Handling

•try
•Program statements that you want to monitor

•catch
•Your code can catch the exception and handle it

•throw
•To manually throw an exception

•throws
•Any exception that is thrown out of a method must be
specified as such by a throws clause

•finally
•Any code that absolutely must be executed is put in
finally block

Java Programming Prajyoti Niketan College, Pudukad236

General form of Exception Handling
try

{

//block of code to monitor errors

}

catch(ExceptionType1 exOb)

{

//exception handler for ExceptionType1

}

catch(ExceptionType2 exOb)

{

//exception handler for ExceptionType2

}

//…
finally

{

//block of statements to be executed before try block ends

}

ExceptionType is the type of
exception that has occurred.

Java Programming Prajyoti Niketan College, Pudukad237

Exception Types and classes

•Throwable
•Exception
•RuntimeException

•Error

Exception: This class is used for
exceptional conditions that user programs
should catch. This is also the class that you
will subclass to create your own custom
exception types.

RuntimeException examples: Division by
zero, Invalid array indexing

Error: Exceptions that are not expected to
be caught under normal circumstances by
your program.
Example: Stack Overflow.

Java Programming Prajyoti Niketan College, Pudukad238

Uncaught Exceptions
class exc0{
public static void main(String args[]){
int d=0;
int a=42/d;
}}
• Java Runtime System constructs a new exception

object and throws this exception.
• This causes the Exc0 to stop, because once the

exception is thrown, it must be caught by an
exception handler and dealt with it immediately.

• The default handler displays a string describing the
exception :

java.lang.ArithmeticException: / by zero at
Exc0.main (Exc0.java: 4)

The stack trace will always show the sequence of
method invocations that led up to the error

Java Programming Prajyoti Niketan College, Pudukad239

Using try and catch
• If you handle an exception by yourself

– It allows you to fix an error
– It prevents the program from automatically terminating
– Example:

class Main
{

public static void main(String[] args) {
int d,a;
try
{

d=0;
a=42/d;
System.out.println("This will not be printed");

}
catch(ArithmeticException e)
{

System.out.println("Division by zero");
}
System.out.println("After catch statement");

}
}

C:\>java Main
Division by zero
After catch
statement

Java Programming Prajyoti Niketan College, Pudukad240

•Once an exception is thrown, program control
transfers out of the try block into the catch
block.
•Once the catch statement has executed,

program control continues with the next line in
the program following the entire try/catch
mechanism.
• You can display the description of an exception

by using the println() statement (Throwable
overrides the toString() method)
– Example:

catch(ArithmeticException e)
{

System.out.println(“ Exception : “ + e);
}

Output:
Exception: java.lang.ArithmeticException: / by zero

Java Programming Prajyoti Niketan College, Pudukad241

Multiple catch clauses

•More than one exception could be
raised by a single piece of code.
•When an exception is thrown,
each catch statement is inspected
in order, and the first one whose
type matches that of the
exception is executed.
•After one catch statement
executes, the others are bypassed,
and execution continues after the
try/catch block.

Java Programming Prajyoti Niketan College, Pudukad242

class Main

{

public static void main(String[] args) {

try{

int a=args.length;

System.out.println("a="+a);

int b=42/a;

int c[]={1};

c[42]=99;

}

catch(ArithmeticException e){

System.out.println("Division by zero "+e);

}

catch(ArrayIndexOutOfBoundsException e){

System.out.println("Array Index oob "+e);

}

System.out.println("After multiple catch
statements");

}

}

C:\>java Main
a=0
Division by zero
java.lang.ArithmeticException: /
by zero
After multiple catch statements

C:\>java Main 12
a= 1
Array Index oob
java.lang.ArrayIndexOutOfBoundsE
xception: Index 42 out of bounds
for length 1
After multiple catch statements

Java Programming Prajyoti Niketan College, Pudukad243

Nested try statements

•The try statement can be nested.
•A try statement can be inside the block
of another try.
• If an inner try statement does not have
a catch handler for a particular
exception, the next try statement’s
catch handlers are inspected for a
match.
•This continues until one of the catch
statement succeeds, or until all of the
nested try statements are exhausted.
• If no catch statement matches, then
the Javarun-time system will handle the
exception.

244

class Main{

public static void main(String[] args) {

try{ int a=args.length;

System.out.println("a= "+a);

int b=42/a;

try{ if(a==1)

a=a/(a-a);

if(a==2){

int c[]={1};

c[42]=99;

} }

catch(ArrayIndexOutOfBoundsException e){

System.out.println("Array Index oob "+e);

} }

catch(ArithmeticException e){

System.out.println("Division by zero "+e);

} } }

C:\>java Main
a= 0
Division by zero
java.lang.ArithmeticException: /
by zero

C:\>java Main 12
a= 1
Division by zero
java.lang.ArithmeticException: /
by zero

C:\>java Main 12 24
a= 2
Array Index oob
java.lang.ArrayIndexOutOfBounds
Exception: Index 42 out of
bounds for length 1

245

throw
• So far, you have only been catching exceptions

that are thrown by the Java run-time system.
• It is possible for your program to throw an

exception explicitly, using the throw statement.
• General form:

throw ThrowableInstance;

• ThrowableInstance must be an object of type
Throwable or a subclass of Throwable.

• There are two ways you can obtain a Throwable
object:
– Using a parameter into a catch clause
– Creating an object with new

Java Programming Prajyoti Niketan College, Pudukad246

throw

• The flow of execution stops immediately after the throw
statement: any subsequent statements are not executed.

• The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception.

• Outer try statements are inspected in sequence until it finds a
match or it goes to the default handler.

Java Programming Prajyoti Niketan College, Pudukad247

Example
class Main
{

static void demoProc()
{

try{
throw new NullPointerException("demo");

}
catch(NullPointerException e){

System.out.println("Caught inside demoProc");
throw e;

}
}
public static void main(String[] args) {

try{
demoProc();

}
catch(NullPointerException e){

System.out.println("Recaught "+e);
}

}
}

C:\>java Main
Caught inside demoProc
Recaught java.lang.NullPointerException:
demo

Java Programming Prajyoti Niketan College, Pudukad248

throws
• If a method is capable of causing an exception

that it does not handle, it must specify this
behaviour so that callers of the method can
guard themselves against that exception.

• Do this by including a throws clause in the
methods declaration.

• A throws clause lists the type of exceptions
that a method might throw.

• This is necessary for all exceptions, except
those of type Error and RuntimeException, or
any of their subclasses.

• All other exceptions that a method can throw
must be declared in the throws clause. If they
are not, a compile time error happens.

Java Programming Prajyoti Niketan College, Pudukad249

throws

• General form:
type method_name(parameter-list) throws exception_list

{

// body of method

}

Exception list is a comma seperated list of the exceptions
that a method can throw.

Java Programming Prajyoti Niketan College, Pudukad250

An incorrect program that tries to
throw an exception that it does not

catchclass Main

{

static void demoProc()

{

System.out.println("Inside Throwone");

throw new NullPointerException("demo");

}

public static void main(String[] args) {

demoProc();

}}

C:\>java Main
Inside Throwone
Exception in thread "main"
java.lang.NullPointerExceptio
n: demo at
Main.demoProc(Main.java:6)
 at Main.main(Main.java:11)

251

Correct Program

class Main
{

static void demoProc() throws NullPointerException
{

System.out.println("Inside Throwone");
throw new NullPointerException("demo");

}
public static void main(String[] args) {

try
{

demoProc();
}
catch(NullPointerException e)
{

System.out.println("caught "+e);
}

}
}

C:\>java Main
Inside Throwone
caught
java.lang.NullPointerException
: demo

Java Programming Prajyoti Niketan College, Pudukad252

finally
• finally creates a block of code that will be

executed after a try/catch block has
completed and before the code following the
try/catch block.

• The finally block will execute whether or not
an exception is thrown.

• If an exception is thrown, the finally block will
execute even if no catch statement matches
the exception.

• finally clause is executed just before the
method returns. 253

Example
class Main
{

static void procA()
{

try
{
System.out.println("Inside

procA");
throw new

NullPointerException("demo");
}
finally
{
System.out.println("ProcA's

finally");
}

}

static void procB()
{
try
{

System.out.println("Inside procB");
return;

}
finally
{
System.out.println("ProcB's finally");
}
}

Java Programming Prajyoti Niketan College, Pudukad254

static void procC()
{

try
{
System.out.println("Inside

procC");
return;
}
finally
{
System.out.println("ProcC's

finally");
}

}

public static void main(String[] args) {
try
{
procA();
}
catch(NullPointerException e)
{
System.out.println("caught "+e);
}
procB();
procC();
}
}

C:\>java Main
Inside procA
ProcA's finally
caught java.lang.NullPointerException: demo
Inside procB
ProcB's finally
Inside procC
ProcC's finally

Java Programming Prajyoti Niketan College, Pudukad255

Java’s Built-in Exceptions

• Inside java.lang, java defines
several exception classes.
•Exceptions derived from
RuntimeException are
automatically available. These are
called unchecked exceptions
because the compiler does not
check to see if a method handles
or throws these exceptions.

Java Programming Prajyoti Niketan College, Pudukad256

Java’s unchecked
RunTimeException

Subclasses
Arithmet
icExcepti

on •Arithmetic Error, such as Divide by Zero
ArrayInde
xOutOfBo
undsExce

ption

•Array Index is out of bounds

ClassCast
Exception •Invalid cast

NullPointe
rException

•Invalid use of Null reference

NumberF
ormatExc

eption

•Invalid conversion of a string to a numeric
format

StringInd
exOutOf
BoundsE
xception

•Attempt to index outside the bounds of a string

Java Programming Prajyoti Niketan College, Pudukad257

Java’s checked exceptions

ClassNotF
oundExcep

tion
•Class not found

IllegalAcc
essExcepti

on
•Acceess to a class is denied

Interrupted
Exception

•One thread has been interrupted by
another thread

NoSuchMet
hodExcepti

on
•A requested method does not exist

…………
…..

Java Programming Prajyoti Niketan College, Pudukad258

Creating your own exception
subclasses

•Define a subclass of Exception. It is
their existence in the type system
that allows you to use them as
exceptions.
•The Exception class does not
define any methods of its own.
•Exception class is a subclass of
Throwable

Java Programming Prajyoti Niketan College, Pudukad259

class MyException extends Exception{

private int detail;

MyException(int a)

{

detail=a;

}

public String toString(){

return "MyException["+detail+"]";

}

}

class Main

{

static void compute(int a) throws MyException{

System.out.println("Called compute("+a+")");

if(a>10){

throw new MyException(a);

}

System.out.println("Normal Exit");

}

public static void main(String[] args)
{

try
{

compute(1);
compute(20);

}
catch(MyException e)
{

System.out.println("caught
"+e);

} } }

C:\Rincy\Programs>java Main
Called compute(1)
Normal Exit
Called compute(20)
caught MyException[20]

Java Programming Prajyoti Niketan College, Pudukad260

Using class and objects, Write a java program to find the sum of two
complex numbers (Hint: Use object as parameter to function).

import
java.util.Scanner;

class Complex
{
float real;
float imag;
Complex(float r,float i)
{
real=r;
imag=i;
}

void sum(Complex c1,Complex

c2)

{

real=c1.real+c2.real;

imag=c1.imag+c2.imag;

System.out.println("Added

Number is "+real+"+"+imag+"i");

}

} 261

class AddComplex

{

public static void main(String args[])

{

Scanner sc=new Scanner(System.in);

System.out.println("Enter Complex Number 1:");

int rl=sc.nextInt();

int im=sc.nextInt();

Complex ob1=new Complex(rl,im);

System.out.println("Enter Complex Number 2:");

rl=sc.nextInt();

im=sc.nextInt();

Complex ob2=new Complex(rl,im);

Complex ob3=new Complex(0,0);

ob3.sum(ob1,ob2);

}

}

C:\>java AddComplex
Enter Complex Number 1:
2
3
Enter Complex Number 2:
4
5
Added Number is 6.0+8.0i

Java Programming Prajyoti Niketan College, Pudukad262

Threads

• Multithreaded program: different parts (threads)
run concurrently

• Multithreading is a form of multitasking
• Process based: run two or more programs

concurrently
• Thread based: a single program performs two or

more tasks simultaneously
• Thread States

– Running
– Ready: waiting for CPU
– Suspended
– Resumed after suspension
– Blocked: waiting for resources
– Terminated: halts execution; cannot resume

Java Programming Prajyoti Niketan College, Pudukad263

Thread Priority

•Context switch: thread priority is used to
decide when to switch from one running
thread to the next
•Voluntarily relinquish the control:

sleeping or blocking on I/O. Highest
priority ready thread will get the CPU
•Preemptive multitasking: lower priority

thread is preempted by a higher priority
thread
•Monitor: used to protect a shared assets

from being manipulated by more than
one thread at a time

Java Programming Prajyoti Niketan College, Pudukad264

Thread & Runnable

Java’s multithreading system is built upon
Thread class, its

methods and Runnable interface
• Create a thread: extend Thread or

implement Runnable interface Methods
• getName(): obtain thread’s name
• getPriority(): obtain thread’s priority
• isAlive(): is the thread still running
• join(): wait for a thread to terminate
• run(): entry point for a thread
• sleep(): suspend a thread
• start(): Start a thread by calling run

Java Programming Prajyoti Niketan College, Pudukad265

The Main Thread

•When a Java program starts up, one
thread begins running immediately.
(main thread)
• The main thread is important for two

reasons
– It is the thread from which other “child”

threads will be spawned
– It must be the last thread to finish

execution because it performs various
shutdown activities

– It can be controlled through a Thread
object

– You can do so by calling a method
currentThread()

Java Programming Prajyoti Niketan College, Pudukad266

class Main{

public static void main(String args[]){

Thread t=Thread.currentThread();

System.out.println("Current Thread:"+t);

t.setName("My Thread");

System.out.println("After name change"+t);

try{

for(int n=5;n>0;n--){

System.out.println(n);

Thread.sleep(1000);

}

}

catch(InterruptedException e){

System.out.println("Main thread interrupted");

}

}

}

C:\>java Main
Current
Thread:Thread[main,5,main]
After name
changeThread[My
Thread,5,main]
5
4
3
2
1

Java Programming Prajyoti Niketan College, Pudukad267

• static void sleep(long milliseconds)
throws InterruptedException
– Causes the thread from which it is

called to suspend execution for a
specified period of milliseconds.

• static void sleep(long millisecons, int
nanoseconds) throws
InterruptedException
• final void setName(Sring
threadName)
• final String getName()

Java Programming Prajyoti Niketan College, Pudukad268

Runnable Interface

Construct a thread on any object that implements
Runnable

• To implement Runnable, class should contain run()
public void run()

• Instantiate an object of type Thread within the class
Thread(Runnable threadOb, String threadName)

• run() establishes the entry point for another, concurrent
thread

• thread start running with start() –> start()
executes a call to run()

Java Programming Prajyoti Niketan College, Pudukad269

class ThreadEg implements Runnable {
Thread t;
ThreadEg() {
t = new Thread(this, "Thread Example"); //create second thread
System.out.println("Child thread" + t);
t.start(); }
public void run() {
try {
for(int i=5;i>0;i--) {
System.out.println("Child thread" + i);
Thread.sleep(500); }
} catch(InterruptedException e) {
System.out.println("Child interrupted"); }
System.out.println("Exit child thread"); }
}

Java Programming Prajyoti Niketan College, Pudukad270

class Main {
public static void main(String args[]) {
new ThreadEg();
try {
for(int i=5;i>0;i--) {
System.out.println("Main thread" + i);
Thread.sleep(1000); }
} catch(InterruptedException e) {
System.out.println("Main thread
interrupted");}
System.out.println("Main thread
exit"); }
}

C:\>java Main
Child
threadThread[Thread
Example,5,main]
Main thread5
Child thread5
Child thread4
Main thread4
Child thread3
Child thread2
Main thread3
Child thread1
Exit child thread
Main thread2
Main thread1
Main thread exit

Java Programming Prajyoti Niketan College, Pudukad271

Extending Thread

• Create a class that extends
Thread, and then

Create an instance of the class
• Override run()
• super() invokes Thread

constructor
public Thread(String

threadName)

Java Programming Prajyoti Niketan College, Pudukad272

class ThreadEg extends Thread {
ThreadEg() {
super("Thread Example"); //create second thread
System.out.println("Child thread" + this);
start(); }
public void run() { //entry point for second thread
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child thread" + i);
Thread.sleep(500); }
} catch(InterruptedException e) {
System.out.println("Child interrupted"); }
System.out.println("Exit child thread"); }
}

Java Programming Prajyoti Niketan College, Pudukad273

class Main{
public static void main(String args[]) {
new ThreadEg(); //create a thread
try {
for(int i = 5; i > 0;i--) {
System.out.println("Main thread" + i);
Thread.sleep(1000); }
} catch(InterruptedException e) {
System.out.println("Main thread
interrupted");}
System.out.println("Main thread
exit"); }
}

C:\Rincy\Programs>java Main
Child threadThread[Thread
Example,5,main]
Main thread5
Child thread5
Child thread4
Main thread4
Child thread3
Child thread2
Main thread3
Child thread1
Exit child thread
Main thread2
Main thread1
Main thread exit

Java Programming Prajyoti Niketan College, Pudukad274

Using isAlive() and join()

How can one thread know when other thread
has ended?
• Two ways as solution
• First you can call isAlive() on the thread.
•Defined in Thread class

• final boolean isAlive()
Returns true if the thread upon which it is called

is still running.

• Second the method that is commonly used
to wait for a thread to finish is

• final void join() throws InterruptedException
This method waits until the thread on which it is

called is terminates.

Java Programming Prajyoti Niketan College, Pudukad275

Suspend, Resume, isAlive, join
class ThreadEg implements

Runnable
{

String name;
Thread t;
ThreadEg(String

threadName)
{

name = threadName;
t = new Thread(this,

name);
System.out.println("Ne

w Thread"+ t);
t.start();

}

public void run()
{
try
{
for(int i=5; i>0; i--)
{
System.out.println(name +
":" + i);
Thread.sleep(200);
}
}

Java Programming Prajyoti Niketan College, Pudukad276

catch(InterruptedException e)

{

System.out.println(name + "interrupted");

}

System.out.println(name + “ exiting");

}

}

class Main

{

public static void main(String args[])

{

ThreadEg ob1 = new ThreadEg("One");

ThreadEg ob2 = new ThreadEg("Two");

System.out.println(“Thread one is

Alive”+ob1.t.isAlive());

try

{

Thread.sleep(1000);

ob1.t.suspend();

System.out.println("Suspend
One");

Thread.sleep(1000);

ob1.t.resume();

System.out.println("Resume
One");

ob2.t.suspend();

System.out.println("Suspend
Two");

Thread.sleep(1000);

ob2.t.resume();

System.out.println("Resume
Two");

} 277

catch(InterruptedException e)

{

System.out.println("Main interrupted");

}

try

{

System.out.println("Wait for threads to finish");

ob1.t.join();

ob2.t.join();

}

catch(InterruptedException e)

{

System.out.println("Main interrupted");

}

System.out.println("Main thread exit");

}

}

C:\Rincy\Programs>java Main
New ThreadThread[One,5,main]
New ThreadThread[Two,5,main]
Thread one is Alivetrue
One:5
Two:5
One:4
Two:4
One:3
Two:3
Two:2
One:2
Two:1
One:1
Suspend One
Two exiting
Resume One
Suspend Two
One exiting
Resume Two
Wait for threads to finish
Main thread exit

Java Programming Prajyoti Niketan College, Pudukad278

Thread Priorities
• Thread priorities are used by the thread scheduler to decide when each

thread should be allowed to run.

• Higher priority threads get more CPU time than lower priority threads.

• A higher priority thread can also preempt a lower priority one.

• To set a thread’s priority, use the setPriority() method, which is a
member of Thread.

• General form:

final void setPriority(int level)

• Here, level specifies the new priority setting for the calling thread.

• The value of level must be within the range MIN_PRIORITY and
MAX_PRIORITY. These values are 1 and 10, respectively.

• To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5.

• These values are defined as final variables within Thread.

Java Programming Prajyoti Niketan College, Pudukad279

class Clicker implements Runnable

{

int click=0;

Thread t;

private volatile boolean
running=true;

public Clicker(int p)

{

t = new Thread(this);

t.setPriority(p);

}

public void run()

{

while(running)

{

click++;

}

}

public void stop()
{

running=false;
}
public void start()
{

t.start();
}

}

Java Programming Prajyoti Niketan College, Pudukad280

class Main

{

public static void main(String args[])

{

Thread.currentThread().setPriority(Thread.MAX_PRI
ORITY);

Clicker hi=new Clicker(Thread.NORM_PRIORITY+2);

Clicker lo=new Clicker(Thread.NORM_PRIORITY-2);

lo.start();

hi.start();

try

{

Thread.sleep(1000);

}

catch(InterruptedException e)

{

System.out.println("Main thread interrupted");

}

lo.stop();

hi.stop();

try

{

hi.t.join();
lo.t.join();
}

catch(InterruptedException
e)
{
System.out.println("Interrup
tedException caught");
}
System.out.println("Low-pri
ority thread "+lo.click);
System.out.println("High-pri
ority thread "+hi.click);
}
}

C:\>java Main
Low-priority thread
744800224
High-priority thread
745453003 281

Synchronization

• When two or more threads need access to a shared resource,
they need some way to ensure that the resource will be used
by only one thread at a time. The process by which this is
achieved is called synchronization.

• Monitor/semaphore

• A monitor is an object that is achieved as a mutually exclusive
lock

• Only one thread can own a monitor at a time

• When a thread acquires a lock, it is said to have entered the
monitor.

• All other threads attempting to enter the locked monitor will
be suspended until the first thread exits the monitor. These
other threads are aid to be waiting for the monitor.

• You can synchronize your code through
– Synchronized methods

Java Programming Prajyoti Niketan College, Pudukad282

class Callme

{

void call(String msg)

{

System.out.print("["+msg);

try

{

Thread.sleep(1000);

}

catch(InterruptedException e)

{

System.out.println("Interru
pted");

}

System.out.println("]");

}

}

class Caller implements Runnable

{

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s)
{

target=targ;
msg=s;
t=new Thread(this);
t.start();

}
public void run()
{

target.call(msg);
}

}

Java Programming Prajyoti Niketan College, Pudukad283

class Main

{

public static void main(String args[])

{

Callme target=new Callme();

Caller ob1=new Caller(target,"Hello");

Caller ob2=new Caller(target,"Synchronised");

Caller ob3=new Caller(target,"World");

try

{

ob1.t.join();

ob2.t.join();

ob3.t.join();

}

catch(InterruptedException e)

{

System.out.println("InterruptedException
caught");

}

}

}

C:\>java Main
[World[Hello[Synchronised]
]
]

Java Programming Prajyoti Niketan College, Pudukad284

Make this change

public void run()

{

synchronized(t
arget){

target.call(msg
);}

}

C:\>java Main
[Hello]
[World]
[Synchronised]

Java Programming Prajyoti Niketan College, Pudukad285

Thank You

286

