FIRST SEMESTER M.Sc. DEGREE REGULAR/SUPPLEMENTARY EXAMINATION, NOVEMBER 2020

(CBCSS)

Computer Science

CSS 1C 02—ADVANCED DATA STRUCTURES
(2019 Admissions)

Time : Three Hours

Maximum : 30 Weightage

General Instructions

1. In cases where choices are provided, students can attend all questions in each section.
2. The minimum number of questions to be attended from the Section / Part shall remain the same.
3. There will be an overall ceiling for each Section/Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any four questions.
Each question carries 2 weightage.

1. Write an algorithm to find the largest number in a list of n integers and comment on its time complexity.
2. Explain the working principle of any one of the following sort algorithms (Insertion, Bubble, Selection).
3. What is a recursive list ?
4. Define Binary search tree. Draw a sample BST.
5. Explain the need for balancing a search tree.
6. Explain the concept of linear probing.
7. What is a Heap ?

Section B

Answer any four questions.
Each question carries 3 weightage.
8. Discuss the objectives and desirable characteristics of an algorithm.
9. Write algorithms for the following operations on singly linked list:
(i) To reverse the list.
(ii) To concatenate list.
(iii) To delete all nodes.
10. With suitable example explain an efficient representation for sparse matrix.
11. Explain the different graph representation schemes.
12. Write a note on Tries.
13. Explain the properties of Min-max heaps. Highlight applications of Min-Max heaps.
14. Compare binary heap with Fibonacci heaps.

$$
(4 \times 3=12 \text { weightage })
$$

Section C

Answer any two questions.
Each question carries 5 weightage.
15. Write necessary functions for the implementation of stack data structure as a linked list. Illustrate with example, the steps in the conversion of an infix expression to postfix, using the data structure Stack.
16. Explain the properties of Red-Black tree. Illustrate with figures, the steps in the insertion of the following numbers, into an empty Red-Black tree.
$2,1,4,5,9,3,6,7$.
17. Explain implementation of double hashing algorithms. Discuss the need and steps in rehashing and extendable hashing.
18. What is a Binomial heap? Give examples. Explain the operations performed on Binomial heaps. Highlight any one application of Binomial heap.
$(2 \times 5=10$ weightage $)$

