
### **Computer Fundamentals**

Dr Binu P Chacko Principal Prajyoti Niketan College Pudukad, THRISSUR

# Algorithm

- Leap year
- 1. Start
- 2. Read year
- 3. If year % 400 != 0 then go to step 5
- 4. Print "Leap Year" go to step 9
- 5. If year % 100 = 0 then go to step 7
- 6. If year % 4 = 0 then go to step 8
- 7. Print "Not Leap Year" go to step 9
- 8. Print "Leap year"
- 9. Stop

### **Functional Units**



### **Computer Hardware**

- Processor: transforms raw data into useful information
- Brain organises and carries out instructions
- Microprocessor
- Motherboard: circuitry that connects the processor to the other hardware
- Video card, sound card, disk controller, etc. are in motherboard

# Memory

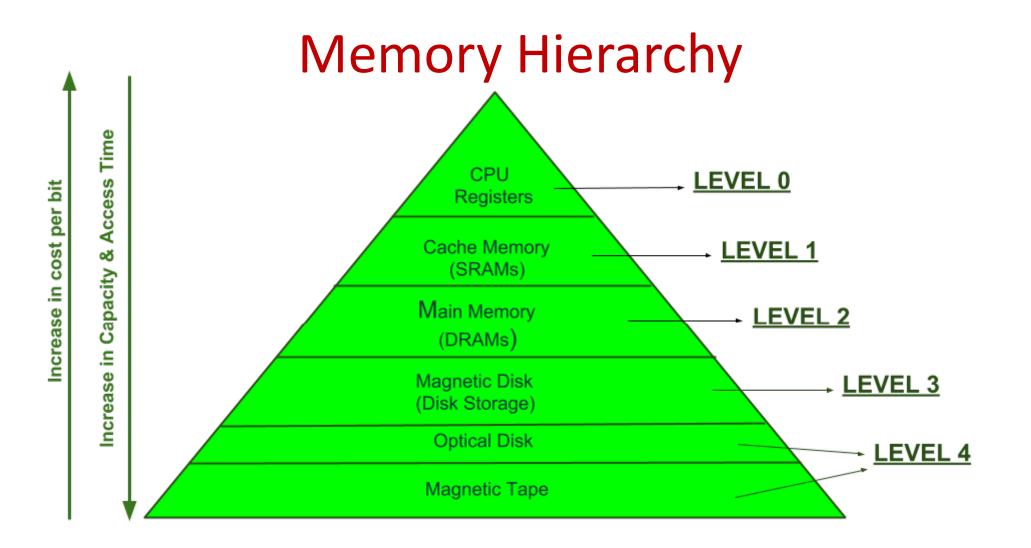
- RAM: read/write temporary (volatile) memory
- Fast access
- Program runs from memory
- Measurement unit: byte, KB, MB, GB, TB
- ROM: permanent (nonvolatile) memory
- Holds instructions that computer needs to operate

# **IO Devices**

- Input devices accept data and instructions from the user or from another computer system
- Output devices return processed data to the user or to another computer system
- Softcopy on a monitor and hardcopy using printer
- Touch screen acts as both input and output device – sensors detect the touch
- Communication devices connect one computer to another (networking). E.g. modem – communicates through telephone lines or cable TV system, and NIC

# **Storage Devices**

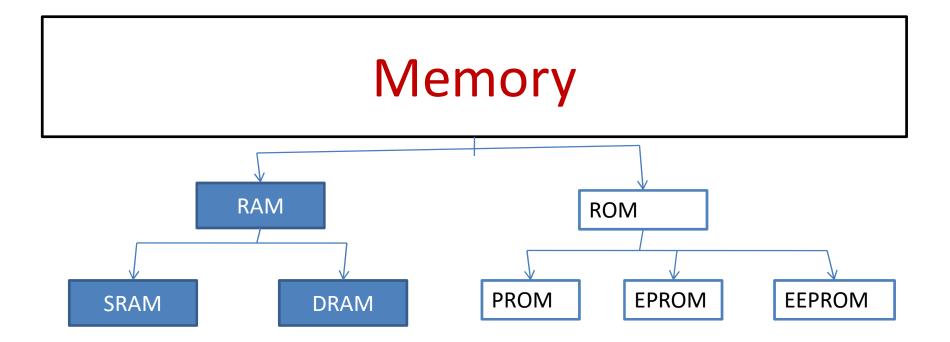
- Electronic file cabinet (permanent storage)
- Large storage capacity
- Slower, cheaper


### Data Access Methods

- Sequential access storage: punched card, paper tape, magnetic tape
- Direct access storage: magnetic disk and drum
- Time taken to access a record depends on the mechanical process involved. Scanning of some preceding data is necessary
- Random access storage: magnetic core, semi conductor, thin film, bubble storage
- No scanning of data required, Access time is independent of storage location

- Control Unit
  Function of a CU is to initiate a sequence of microoperations Methods of implementing a CU
- Hardwired control: control signals are generated by hardware
- Use of fixed instructions, fixed logic blocks of and/or arrays, encoder, decoder
- High speed operation, expensive, relatively complex, no flexibility
- E.g. Intel 8085, Motorola 6802, Zilog 80, RISC CPUs
- Microprogrammed control: A CU whose binary control variables  $\bullet$ are stored in memory. An elegant and systematic method for controlling the microoperation sequences
- The control function that specifies a microoperation is a binary variable. Control variables are represented by control words. Each word in control memory (part of CU) contains a *microinstruction* (specifies one or more microoperations). A sequence of microinstructions constitutes a microprogram
- E.g. Intel 8080, Motorola 68000, CISC CPUs

### **Data Organisation**


Bit: 1 or 0, on or off, red or green, pass or fail Nibble: hexadecimal number, BCD - represent up to 16 distinct values Byte: smallest addressable datum (data item); MSB, LSB KB, MB, GB, TB, Peta B, Exa B, Zetta B, Yotta B Mask out unwanted bits if require less than a byte Word



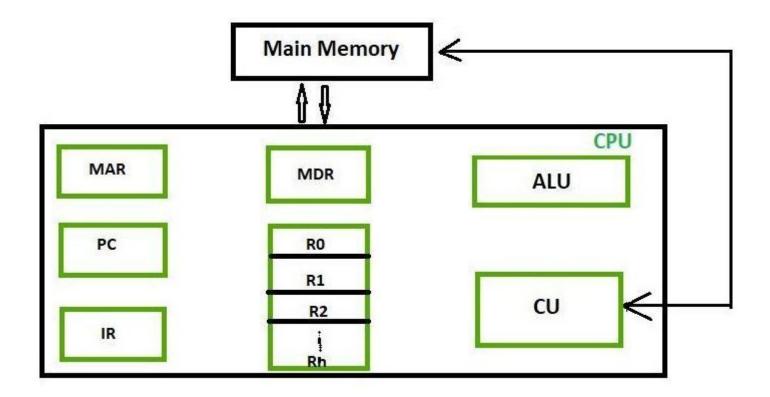
#### **MEMORY HIERARCHY DESIGN**

### Cont...

- Internal memory or primary memory: main memory, cache memory, CPU registers – directly accessible by processor
- External memory or secondary memory: magnetic disk, optical disk, magnetic tape (peripheral device) – accessible by processor via I/O module
- Characteristics: access time, capacity, cost per bit, performance



### RAM


| DRAM                                             | SRAM                                                 |
|--------------------------------------------------|------------------------------------------------------|
| Made up of tiny capacitors that leak electricity | Made up of D flip flops                              |
| Frequent recharging requires to maintain data    | Holds its contents as long as the power is available |
| Inexpensive                                      | Expensive                                            |
| Slower                                           | Faster                                               |
| Large storage capacity                           | Low storage capacity                                 |
| Uses less power                                  | Uses more power                                      |
| Generates less heat                              | Generates more heat                                  |
| Used for main memory                             | Used for cache memory                                |

### ROM

- Used in embedded systems, calculators, peripheral devices
- **PROM**: once programmed, contents can't be changed
- EPROM: expose to ultraviolet light to erase the data
- EEPROM: erase only portions of the chip by applying an electric field
- Masked ROM: can't the change the data

| RAM                       | ROM                                     |
|---------------------------|-----------------------------------------|
| Temporary storage         | Permanent storage                       |
| Volatile                  | Non-volatile                            |
| Used in normal operations | Used in startup process of the computer |
| Writing data is faster    | Slow writing speed                      |

## **CPU registers**



### Cont...

- For fast retrieval of data for processing
- Accumulator:
- MAR: holds address of the memory location to be accessed
- MDR: contains data to be written into/read from memory
- General purpose registers: R0, R1,...Rn-1 are used to store temporary data during any ongoing operation
- Program counter: keeps track of execution sequence of the program
- Instruction register: holds the instruction to be executed next
- Flag register: Sign, Carry, Auxiliary Cary, Zero, Parity

# Cache Memory

- Fast, small, costly memory
- Holds frequently used data and instructions
- Acts as the buffer between RAM and CPU
- Hit/miss Performance is measured in terms of hit ratio
- The access time of primary cache in processor chip is comparable to that of registers
- Secondary cache (L2) is placed in between primary cache and memory
- Mapping: correspondence between main memory block and cache
- Direct mapping: maps each block of main memory into only one cache line
- Associative mapping: associative memory is used to store content and addresses of memory word
- Set associative mapping: a block in memory can map to any one of the lines of a specific set

# Magnetic Tape

- Plastic ribbon coated on one side with magnetic oxide; width 4mm-1 inch
- Sequential memory; 100MB-200GB capacity; used to backup data
- magnetic tape drive for reading/writing
- Adv: low cost, reusable, portable
- DisAdv: large access time, Moderate data transmission speed, Vulnerable to damage, Difficult to update the data

### **Disk Drives**

- Mechanism + Disk controller
- Mechanism: disk, R/W head, arm
- Controller: μp + buffer memory, interface to SCSI bus
- Manages storage and retrieval of data to and from mechanism
- Performs mappings between logical address and physical disk sectors
- Disk size: 1.3" to 8"
- Track, sector, cylinder (2000 Nos), zones (3-20) of cylinders based on track length
- Seek time, latency time

# CD ROM

- Introduced in 1982 by Danon (Japan)
- Made up of poly carbonate plastic; 700MB;
- random access; slow; easily scratched