Programme	B. Sc. Mathematics Honours							
Course Code	MAT1MN103							
Course Title	BASIC CALC	ULUS						
Type of Course	Minor							
Semester	Ι							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites		ry including functions and the	<u> </u>					
Course	This course pro	vides a comprehensive expl	oration of calcu	lus and its				
Summary	* *	begins with fundamental co						
		ns, laying the groundwork for						
		ion techniques, including pr						
		derivatives of inverse funct	11					
		as Rolle's and Mean Value	· · ·	Ū.				
	1	lores integral calculus, cove	U U					
		rical integration techniques	-					
	Simpson's Rule), and introduces hyperbolic	c functions and	their derivatives and				
	integrals.							

.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Apply graphical analysis skills to mathematical models:	Ар	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam						
CO2	Evaluate and solve calculus problems involving limits and continuity	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam						
CO3	Apply differentiation and integration techniques to analyse functions:	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam						
# - Factu	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Detailed Syllabus:

Text B	ook	Calculus: Early Transcendental Functions (6edn), Ron Larson and Cengage Learning ISBN-13: 978-1-285-77477-0.	Bruce E	dwards
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Foundations of Calculus: Graphs, Functions, and Limits		
	1	A quick review of sections 1.1 and 1.2 (not for external exam)		
		Section 1.3 – Functions and their Graphs		
	2	Section 1.5: Inverse Functions -		
		Inverse Functions, Existence of an Inverse Function		
	3	Section 1.6: Exponential and Logarithmic Functions -		
	Exponential Functions, The Number <i>e</i> , The Natural Logarithmic			
Ι		Function		
	4	Section 2.2: Finding Limits Graphically and Numerically -	13	
		An Introduction to Limits, Limits That Fail to Exist, A Formal		Min 15
	Definition of Limit (examples are optional topics)			
	5	Section 2.3: Evaluating Limits Analytically -		
		Properties of Limits, A Strategy for Finding Limits,		
	6	Section 2.3: Evaluating Limits Analytically -		
		Dividing Out Technique, Rationalizing Technique, The Squeeze		
		Theorem		
	7	Continuity, Derivatives, and Differentiation Rules		
	7	Section 2.4: Continuity and One-Sided Limits -		
		Continuity at a Point and on an Open Interval, Properties of Continuity, The Intermediate Value Theorem.		
	8	Section 3.1: The Derivative and the Tangent Line Problem -		
	0	The Derivative of a Function, Differentiability and Continuity		
	9	Section 3.2: Basic Differentiation Rules and Rates of Change – The		
		Constant Rule, The Power Rule, The Constant Multiple Rule, The		
II		Sum and Difference Rules	12	
	10	Section 3.2 : Basic Differentiation Rules – rest of the section.		Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order		
		Derivatives -		
		The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	13	Section 3.5: Implicit Differentiation		
		Implicit and Explicit Functions, Implicit Differentiation,		
		Logarithmic Differentiation		
		oplications of Derivatives: Extrema, Concavity, and Curve Sketching		
	14	Section 4.1: Extrema on an Interval -		
		Extrema of a Function, Relative Extrema and Critical Numbers,		Min 15
		Finding Extrema on a Closed Interval		
III	15	Section 4.2: Rolle's Theorem and The Mean Value Theorem -	10	
	10	Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First		
		Derivative Test - Increasing and Decreasing Functions. The First Derivative Test		
	17	Increasing and Decreasing Functions, The First Derivative Test		
	17	Section 4.4: Concavity and the Second Derivative Test -		

	-			T				
		Concavity, Points of Inflection, The Second Derivative Test	-					
	18	Section 4.6: A summary of Curve Sketching -						
		Analyzing the Graph of a Function						
		Integral Calculus: Fundamental Theorems and Applications"						
	19	Section 5.1: Antiderivatives and Indefinite Integration –						
		Antiderivatives, Basic Integration Rules, Initial Conditions and						
		Particular Solutions.						
	20	Section 5.3: Reimann Sums and Definite Integrals – Reimann						
TX/		Sums, Definite Integrals, Properties of Definite Integrals.						
IV	21							
		The Fundamental Theorem of Calculus, The Mean Value Theorem						
		for Integrals.						
	22	Section 5.4: The Fundamental Theorem of Calculus -						
		Average Value of a Function, The Second Fundamental Theorem						
		of Calculus, Net Change Theorem						
		Open Ended						
	One s	Sided Limits and Discontinuity, Derivatives of Inverse Functions,						
V	Deriv	vatives of Trigonometric functions, Limits at Infinity and Horizontal						
v	Asyn	Asymptotes, Numerical Integration, Area problems using Riemann Sums,						
	Нуре	rbolic Functions.						
Referen	ces:							
1	. Calc	ulus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.						
2	2. Calc	ulus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney	, Pearson	n				
	Publ	ications						

- 3. Calculus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India
- 4. Calculus, (7/e)., Howard Anton, Biven, & Stephen Davis, Wiley India.
- 5. Calculus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wright

Note: 1) Optional topics are exempted for end semester examination.2) Proofs of all the results are also exempted for the end semester exam.,

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	1	3	1	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	nal Exam Assignment		Viva	End Semester Examinations
CO 1	~	~	\checkmark	~	\checkmark
CO 2	\checkmark	\checkmark	√	~	✓
CO 3	~	\checkmark	~	~	\checkmark

Programme	B.Sc. Mathematics Honours								
Course Code	MAT2MN103	MAT2MN103							
Course Title	ANALYSIS A	ND SOME COUNTING P	RINCIPLES						
Type of Course	Minor								
Semester	II								
Academic	100 - 219								
Level									
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic Calculus	and familiarity with Real N	umber system.						
Course	This course co	overs fundamental topics	in calculus an	d complex analysis,					
Summary	beginning with	sequences and series in Me	odule I, explori	ng convergence tests					
	like the nth-terr	n test, comparison tests, and	l alternating ser	ies. Module II delves					
	into complex n	umbers and functions, disc	ussing the arith	metic and geometric					
	properties of c	omplex numbers, along wi	th polar and e	xponential forms. In					
	Module III, the	focus shifts to limits, contin	uity, and differe	entiability of complex					
	functions, inclu	iding the Cauchy-Riemann	equations and	harmonic functions.					
	Finally, Modul	e IV introduces counting	principles, inc	luding permutations,					
		he pigeonhole principle, and							

.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Describe and apply convergence tests for sequences and series.	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
CO2	Demonstrate proficiency in manipulating complex numbers and functions.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
CO3	Evaluate limits, continuity, and differentiability of real and complex functions.	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

Text B Module	ook Unit	 Calculus: Early Transcendental Functions (6/e), Ron Larson an Edwards, Cengage Learning ISBN 13: 978-1-285-77477-0. Complex Analysis A First Course with Applications (3/e), Den Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-94 Discrete Mathematical Structures (6/e), Bernard Kolman, Robe Sharon C. Ross, Pearson ISBN 978-93-325-4959-3 Content 	nis Zill & 61-6	
			+12)	(70)
		Sequences and Series (Text 1)		
	1	Section 9.1: Sequences - Sequences (sub section), Limit of a Sequence, Monotonic Sequences and Bounded Sequences.		
Ι	2	Section 9.1: Sequences Monotonic Sequences and Bounded Sequences		
	3	Section 9.2: Series and Convergence - Infinite Series, Geometric Series, nth-Term Test for Divergence	13	Min
	4	Section 9.3: The Integral Test and p-Series - The Integral Test, p-series and Harmonic Series		15
	5	Section 9.4: Comparisons of Series - Direct Comparison Test, Limit Comparison Test Section 9.5: Alternating Series -		
	U	Alternating Series (sub section), Alternating Series Remainder, Absolute and conditional Convergence		
		Complex Numbers (Text 2)		
	7	Section 1.1: Complex numbers and their Properties - The Imaginary Unit, Terminology, Arithmetic Operations, Zero and Unity, Conjugate, Inverses		
	8	Section 1.2: Complex Plane - Complex Plane, Vectors, Properties, Distance Again, Inequalities		
II	9	Section 1.3: Polar Form of Complex Numbers - Polar Form, Principal Argument, Multiplication and Division, Integer Powers of <i>z</i> , de Moivre's Formula	12	Min
	10	Section 1.4: Powers and Roots - Roots, Principal nth Root	13	15
	11	Section 1.5: Sets of Points in the Complex Plane - Circles, Disks and Neighborhoods, Open Sets, Annulus, Domain, Regions, Bounded Sets Section 2.1: Complex Functions -		
	12			
		Function, Exponential Function Complex Analysis (Text 2)		
III	13	Section 3.1: Limits and Continuity - Introduction, Real Limits, Complex Limits (definition only), Real Multivariable Limits (Example 2 and Problems Using Epsilon Delta Definition are optional)		
	14	Section 3.1: Limits and Continuity -		

		Continuity of Real Functions, Continuity of Complex Functions	12	Min	
		(Example 6 is optional), Properties of Continuous Functions.		15	
	15	Section 3.2: Differentiability and Analyticity -			
		Introduction, The Derivative, Rules of Differentiation			
	16	Section 3.2: Differentiability and Analyticity -			
		Analytic Functions, Entire Functions, Singular Points, An Alternate			
		Definition of $f'(z)$.			
	17	Section 3.3: Cauchy -Riemann Equations -			
		Introduction, A Necessary Condition for Analyticity, A Sufficient			
		Condition for Analyticity			
	18	Section 3.4: Harmonic Functions			
		Introduction, Harmonic Functions, Harmonic Conjugate Functions			
		Introduction to Counting and Probability Theory (Text 3)			
	19	Chapter 3: Counting			
		Section 3.1 - Permutations			
	20	Chapter 3: Counting			
IV		Section 3.2 - Combinations	10	Min	
	21	Chapter 3: Counting	10	15	
		Section 3.3 – Pigeonhole Principle			
	22	22 Chapter 3: Counting			
		Section 3.4 – Elements of Probability			
		Open Ended			
		rn Recognition for Sequences, Rearrangement of Series, The Ratio			
V	Test,	12			
	Serie	14			
		r Mappings, Special Power Functions, Relations and Di Graphs.			
Referen					
	,	Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.			
		& Analytic Geometry, (9/e)., George B. Thomas & Ross L. Finney, Pea	rson		
	cations				
		(7/e), Howard Anton, Biven, & Stephen Davis, Wiley India.			
		Early Transcendentals, (4/e)., Dennis G. Zill and Warren S. Wright.			
		l Engneering Mathematics, (10/e), Erwin Kreyszig, John Wiley and Sor			
	-	Variables and Applications, (8/e), James Brown and Ruel Churchill, Mo	cGraw-H	ill	
		l (UK) Ltd			
	4 1	Iathematics, (6/e), Richard Johnsonbaugh, Pearson			

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	2	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	√	~	✓
CO 3	~	\checkmark	~	~	\checkmark

Programme	BSc Mathematics H	BSc Mathematics Honours							
Course Title	MATRIX ALGEBRA AND VECTOR CALCULUS								
Course Code	MAT3MN203								
Type of Course	Minor								
Semester	III								
Academic Level	200 - 299								
Course Details	Cure d'it	I	Due et e 1	Tetal Harris					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
	per week per week								
	4	4	-	60					
Pre-requisites	Basic Calculus and	d familiarity with Euclidian	Geometry.						
Course	This course cover	s fundamental concepts in	vectors, vector	or calculus, and					
Summary	matrices. Students	will explore vectors in 2-sp	ace and 3-space	ce, including dot					
	and cross products,	as well as lines and planes	in 3-space. The	e vector calculus					
	portion includes vector functions, partial and directional derivatives, tangent								
	planes, normal lines, curl, divergence, line integrals, double integrals, surface								
	integrals, and tripl	e integrals. Additionally,	the course del	ves into matrix					
	algebra, systems of	linear equations, matrix rar	k, and the eige	nvalue problem.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Discuss the geometry of Vectors in	U	С	Internal Exam/			
	two- and three-dimensional spaces			Assignment/ Seminar/			
				Viva / End Sem Exam			
CO2	Discuss the basic concepts of	Ap	Р	Internal			
	matrices, and evaluate the solutions			Exam/Assignment/			
	of system of linear equations using			Seminar/ Viva / End			
	matrices.			Sem Exam			
CO3	Describe the idea of eigen values	U	С	Internal Exam/			
	and eigen vectors.			Assignment/ Seminar/			
				Viva / End Sem Exam			
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) #						
	- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Know	ledge (M)						

Detailed Syllabus:

		anced Engineering Mathematics, 6 th Edition, Dennis G. Zill, LC (2018) ISBN: 978-1-284-10590-2.	Jones	& Bartlett
Module	Unit	Content	Hrs (60)	Ext. Marks (70)
Ι		Vectors		
	1	Section 7.1-Vectors in 2 -Space (quick review)		
	2	Section 7.2-Vectors in 3-Space (quick review)	11	Min. 15
	3	Section 7.3- Dot Product up to and including Example 5		WIII. 13
	4	Section 7.4- Cross Product up to and including Example 3		
	5	Section 7.5- Lines and Planes in 3-space- upto and including Example 6		
	6	Section 7.5- Lines and Planes in 3-space- From Planes: Vector Equation onwards		
II		Vector Calculus		
	7	Section 9.1 – Vector Functions		
	8	Section 9.4 – Partial Derivatives		
	9	Section 9.5 – Directional Derivative – upto and including Example 4.	15	Min. 15
	10	Section 9.5 – Functions of Three Variables onwards.		
	11	Section 9.6 – Tangent Planes and Normal Lines – upto and including Example 4		
	12	Section 9.6 – Topics from Normal Line onwards		
	13	Section 9.7 – Curl and Divergence -		
III		Vector Calculus – contd.		
	14	Section 9.8 – Line Integrals – upto and including Example 5.		Min. 15

	15	Section 9.10 – Double Integrals – upto and including Example 2	12	
	16	Section 9.13 – Surface Integrals – upto and including Example 4		
	17	Section 9.15 – Tripple Integrals (Examples 5 and 7 are optional)		
IV		Matrices		
	18	Section 8.1- Matrix Algebra.		
	19	Section 8.2-Systems of Linear Algebraic Equations. Up to and including Example 7	10	Min. 15
	20	Section 8.2-Systems of Linear Algebraic Equations. From Homogeneous Systems onwards till end omit chemical equations		
	21	Section 8.3 -Rank of a Matrix.		
	22	Section 8.8-The Eigenvalue ProblemUp to and including Example 4		
V		Open Ended	12	
		Vector Spaces, Gram- Schmidt Orthogonalization (for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Eigen Vectors of inverse of A Improper Integrals, Beta and Gama Functions		
		 References: 1. Calculus and Analytic Geometry (9th Edn), George B Thomas, Jr. and Ross L Finney, Addison -Wesley Publishing Company. 2. A Freshman Honors Course in Calculus and Analytic Geometry, Emil Artin (Author), Marvin J Greenberg (Foreword). 		

	3. Advanced Engineering Mathematics (10 th Edn), Erwin	
	Kreyszig, John Wiley and Sons.	
	4. Improper Riemann Integrals: Ioannis M. Roussos CRC	
	Press by Taylor & Francis Group, LLC(2014) ISBN:	
	978-1-4665-8808-0 (ebook -pdf)	

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the
results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	\checkmark	✓	~	\checkmark
CO 3	√	\checkmark	\checkmark	~	\checkmark